Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

## **Supplementary information**

## Fluorescent sensing and Magnetic properties of three coordination

## polymers based on 6-(3,5-dicarboxylphenyl)nicotinic acid and

## pyridine/imidazole linkers

Jie Zhang<sup>a</sup>, Lingling Gao<sup>a</sup>, Yang Wang<sup>a</sup>, Lijun, Zhai<sup>a</sup>, Xiaoqing Wang<sup>a</sup>, Xiaoyan Niu<sup>a</sup> and Tuoping Hu<sup>\*a</sup> Table S1 Crystallographic data for 1, 2 and 3

| Complex                                   | 1                                                               | 2                                                                                | 3                                                                               |
|-------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Empirical formula                         | C <sub>24</sub> H <sub>15</sub> N <sub>3</sub> NiO <sub>6</sub> | C <sub>112</sub> H <sub>94</sub> N <sub>18</sub> Ni <sub>3</sub> O <sub>21</sub> | C <sub>76</sub> H <sub>80</sub> Cu <sub>3</sub> N <sub>16</sub> O <sub>20</sub> |
| Formula weight                            | 500.10                                                          | 2204.18                                                                          | 1728.18                                                                         |
| Crystal system                            | Monoclinic                                                      | Triclinic                                                                        | Monoclinic                                                                      |
| Space group                               | P2/c                                                            | $P\bar{\iota}$                                                                   | $P2_{l}/c$                                                                      |
| a [Å]                                     | 11.2448(14)                                                     | 10.107 (5)                                                                       | 14.0116(18)                                                                     |
| <i>b</i> [Å]                              | 10.0674(13)                                                     | 13.460 (8)                                                                       | 19.843(3)                                                                       |
| <i>c</i> [Å]                              | 24.394(3)                                                       | 23.318 (14)                                                                      | 15.3662(19)                                                                     |
| α [°]                                     | 90                                                              | 92.653 (7)                                                                       | 90                                                                              |
| β [°]                                     | 93.663(2)                                                       | 95.757 (9)                                                                       | 109.191(3)                                                                      |
| γ [°]                                     | 90                                                              | 109.755 (6)                                                                      | 90                                                                              |
| V[Å <sup>3</sup> ]                        | 2755.9(6)                                                       | 2960 (3)                                                                         | 1733.23(18)                                                                     |
| Ζ                                         | 4                                                               | 1                                                                                | 2                                                                               |
| $Dc / (g \cdot cm^{-3})$                  | 1.205                                                           | 1.237                                                                            | 1.438                                                                           |
| F(000)                                    | 1024.0                                                          | 1144.0                                                                           | 1790.0                                                                          |
| $\mu$ (Mo K $\alpha$ ) / mm <sup>-1</sup> | 0.742                                                           | 0.829                                                                            | 0.859                                                                           |
| Reflections collected                     | 14763                                                           | 280982                                                                           | 22948                                                                           |
| $\theta$ range for data collection / (°)  | 1.623-25.682                                                    | 2.5-25.027                                                                       | 1.73-26.377                                                                     |
| Independent reflections $(R_{\rm ex})$    | 5237 (0.1027)                                                   | 4844 (0.0340)                                                                    | 8163(0.0580)                                                                    |
| Data / restraints /                       | 5237/177/363                                                    | 4844/10/412                                                                      | 8163/54/522                                                                     |
| Gof                                       | 0.909                                                           | 1.123                                                                            | 1.028                                                                           |
| $R_1, wR_2 [I > 2\sigma(I)]^{ab}$         | 0.0569, 0.1174                                                  | 0.0417, 0.0864                                                                   | 0.0059,0.1584                                                                   |
| $R_1$ , $wR_2$ (all data) <sup>a</sup>    | 0.1241, 0.1414                                                  | 0.0452, 0.0874                                                                   | 0.0961,0.1818                                                                   |
| Largest diff. Peak<br>and hole[e·Å-3]     | 0.57 and -0.57                                                  | 0.59 and -1.11                                                                   | 0.93 and -0.64                                                                  |
| CCDC number                               | 1886813                                                         | 1886814                                                                          | 1886815                                                                         |

 ${}^{a}R_{I} = \Sigma ||F_{o}| - |F_{c}|/\Sigma ||F_{o}|. \ {}^{b}wR_{2} = \{ [\Sigma w(F_{o}2 - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}] \}^{1/2}.$ 

Table. S2 Selected bond lengths/Å and bond angles/° for complex (1), (2) and (3)

| Tuble, 52 Selected bond lengins, 17 and bond ungles, 161 complex (1), (2) and (c) |            |                        |            |                         |           |
|-----------------------------------------------------------------------------------|------------|------------------------|------------|-------------------------|-----------|
|                                                                                   |            | Comp                   | lex 1      |                         |           |
| Ni1-O1 <sup>A</sup>                                                               | 2.162(3)   | Ni1–O3                 | 2.049(3)   | Ni1–N1                  | 2.085(4)  |
| Ni1–O5 <sup>B</sup>                                                               | 2.069(3)   | Ni1–O2 <sup>A</sup>    | 2.084(3)   | Ni1-N2 <sup>C</sup>     | 2.070(4)  |
| O5 <sup>ii</sup> -Ni1-O1 <sup>A</sup>                                             | 152.19(12) | O3-Ni1-O2 <sup>A</sup> | 156.73(12) | N1-Ni1-O1 <sup>A</sup>  | 90.59(14) |
| O5 <sup>ii</sup> -Ni1-O2 <sup>A</sup>                                             | 89.98(12)  | O3-Ni1-N1              | 91.26(14)  | N23–Ni1–O1 <sup>A</sup> | 89.46(13) |

| O5 <sup>ii</sup> –Ni1–N1             | 89.44(14)                      | O3-Ni1-N2 <sup>c</sup>                | 89.77(13)                                                                                 | N23-Ni1-O2 <sup>A</sup>               | 88.76(13)   |
|--------------------------------------|--------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------|-------------|
| O5 <sup>B</sup> -Ni1-N2 <sup>C</sup> | 90.03(14)                      | O2 <sup>A</sup> –Ni1–O1 <sup>A</sup>  | 62.21(11)                                                                                 | N23-Ni1-N1                            | 178.97(15)  |
| O3-Ni1-O1 <sup>A</sup>               | 94.56(11)                      | O2 <sup>A</sup> -Ni1-N1               | 90.35(14)                                                                                 | O3–Ni1–O5 <sup>B</sup>                | 113.24(12)  |
|                                      | Symmet                         | ry codes: $^{A}1+x, 1+y, +z; ^{E}$    | <sup>3</sup> + <i>x</i> , <i>1</i> - <i>y</i> , - <i>1</i> /2+ <i>z</i> ; <sup>C</sup> -1 | +x, +y+z; +z                          |             |
|                                      |                                | Comp                                  | lex 2                                                                                     |                                       |             |
| Ni1–N5 <sup>A</sup>                  | 2.128 (4)                      | Ni1-O1                                | 2.067 (3)                                                                                 | Ni1–O1 <sup>A</sup>                   | 2.067 (3)   |
| Ni1–O2W                              | 2.089 (4)                      | Ni1–O2W <sup>A</sup>                  | 2.090 (4)                                                                                 | NA2–N1 <sup>C</sup>                   | 2.105 (3)   |
| Ni2–O3                               | 2.163 (3)                      | Ni2–O3W                               | 2.091 (3)                                                                                 | Ni2–O4                                | 2.094 (3)   |
| Ni2–O5 <sup>D</sup>                  | 2.005 (3)                      |                                       |                                                                                           |                                       |             |
| N5 <sup>A</sup> –Ni1–N5              | 180.0                          | O1 <sup>A</sup> -Ni1-N5               | 90.01 (14)                                                                                | O1 <sup>A</sup> -Ni1-N5 <sup>A</sup>  | 89.99 (14)  |
| O1-Ni1-N5                            | 89.99 (14)                     | O1-Ni1-N5 <sup>A</sup>                | 90.01 (14)                                                                                | O1 <sup>A</sup> -Ni1-O1               | 180.0       |
| O1-Ni1-O2WA                          | 88.40 (14)                     | O1 <sup>A</sup> -Ni1-O2W <sup>A</sup> | 91.60 (14)                                                                                | O1-Ni1-O2W                            | 91.60 (14)  |
| O1 <sup>i</sup> -Ni1-O2W             | 88.40 (14)                     | O2W <sup>i</sup> -Ni1-N5              | 90.10 (15)                                                                                | O2W <sup>A</sup> -Ni1-N5 <sup>A</sup> | 88.90 (15)  |
| O2W-Ni1-N5 <sup>A</sup>              | 91.10 (15)                     | O2W-Ni1-N5                            | 88.90 (15)                                                                                | O2W <sup>A</sup> -Ni1-O2W             | 180.0 (2)   |
| N1 <sup>c</sup> -Ni2-O3              | 88.05 (13)                     | N4–Ni2–N1 <sup>C</sup>                | 178.97 (14)                                                                               | N4-Ni2-O3                             | 90.92 (12)  |
| N4-Ni2-O3W                           | 91.75 (13)                     | O3W-Ni2-N1 <sup>C</sup>               | 89.26 (13)                                                                                | O3W-Ni2-O3                            | 164.93 (10) |
| O4-Ni2-N1 <sup>c</sup>               | 92.65 (12)                     | O4-Ni2-N4                             | 86.91 (12)                                                                                | O4-Ni2-O3                             | 62.39 (11)  |
| O4-Ni2-O3W                           | 102.96 (11)                    | O5 <sup>D</sup> -Ni2-N1 <sup>C</sup>  | 87.49 (12)                                                                                | O5 <sup>D</sup> -Ni2-N4               | 92.62 (12)  |
| O5 <sup>D</sup> -Ni2-O3              | 98.65 (11)                     | O5 <sup>D</sup> -Ni2-O3W              | 96.04 (12)                                                                                | O5 <sup>D</sup> -Ni2-O4               | 161.01 (12) |
| S                                    | ymmetry codes: <sup>A</sup> +X | X,-1+Y,+Z; <sup>B</sup> 2-X,2-Y,1-Z   | Z; <sup>C</sup> +X,1+Y,+Z; <sup>D</sup> -1                                                | +X,+Y,+Z; <sup>E</sup> 1+X,+Y,+Z      |             |
|                                      |                                | Comp                                  | lex 3                                                                                     |                                       |             |
| Cu1–O1 <sup>A</sup>                  | 1.946(2)                       | Cu2–O3 <sup>B</sup>                   | 1.956(3)                                                                                  | Cu1–N2 <sup>A</sup>                   | 1.965(3)    |
| Cu1–O1                               | 1.946(2)                       | Cu2–O5                                | 1.924(3)                                                                                  | Cu1–N2                                | 1.965(3)    |
| Cu2–N8 <sup>C</sup>                  | 1.987(4)                       | Cu2–N5                                | 1.986(4)                                                                                  |                                       |             |
| O11–Cu1–O1                           | 180.00(9)                      | O1–Cu1–N2                             | 90.22(12)                                                                                 | O32-Cu2-N5                            | 89.41(13)   |
| O1—Cu1–N2 <sup>A</sup>               | 89.78(12)                      | O11–Cu1–N2                            | 89.78(12)                                                                                 | O32–Cu2–N8 <sup>c</sup>               | 90.36(14)   |
| O11–Cu1–N2 <sup>A</sup>              | 90.22(12)                      | N21-Cu1-N2                            | 180                                                                                       | O5–Cu2–O3 <sup>B</sup>                | 167.82(12)  |
| O5–Cu2–N5                            | 91.49(13)                      | O5–Cu2–N8 <sup>C</sup>                | 91.05(13)                                                                                 | N5–Cu2–N8 <sup>c</sup>                | 168.99(15)  |
|                                      |                                |                                       |                                                                                           |                                       |             |

 $Symmetry \ codes: \ ^{A}-x, 1-y, -z; \ ^{B}1-x, -1/2+y, 3/2-x; \ ^{C}1+x, +y, +z; \ ^{D}1-x, 1/2+y, 3/2-z; \ ^{E}1-x, 1-y, -z; \ ^{F}-1+x, +y, +z; \ ^{D}1-x, 1/2+y, 3/2-z; \ ^{E}1-x, 1-y, -z; \ ^{F}-1+x, +y, +z; \ ^{D}1-x, 1/2+y, 3/2-z; \ ^{E}1-x, 1-y, -z; \ ^{F}-1+x, +y, +z; \ ^{D}1-x, 1/2+y, 3/2-z; \ ^{E}1-x, 1-y, -z; \ ^{F}-1+x, +y, +z; \ ^{D}1-x, 1/2+y, 3/2-z; \ ^{E}1-x, 1-y, -z; \ ^{F}-1+x, +y, +z; \ ^{D}1-x, 1/2+y, 3/2-z; \ ^{E}1-x, 1-y, -z; \ ^{F}-1+x, +y, +z; \ ^{D}1-x, 1/2+y, 3/2-z; \ ^{E}1-x, 1-y, -z; \ ^{F}-1+x, +y, +z; \ ^{D}1-x, 1/2+y, 3/2-z; \ ^{E}1-x, 1-y, -z; \ ^{F}-1+x, +y, +z; \ ^{D}1-x, 1/2+y, 3/2-z; \ ^{E}1-x, 1-y, -z; \ ^{F}-1+x, +y, +z; \ ^{D}1-x, 1/2+y, 3/2-z; \ ^{F}-1+x, +y, +z; \$ 

**Table S3.** Related parameters in the sensing of nitroaromatics/Fe<sup>3+</sup>ions in **3**.

|                  | Quenching  | Exponential equation                                   | $K_{sv}(M^{-1})$    | The detection         |  |
|------------------|------------|--------------------------------------------------------|---------------------|-----------------------|--|
|                  | rate       |                                                        |                     | limit                 |  |
| NT               | 98.96%     | <i>I<sub>0</sub>/I</i> =1.54e [NT]/0.08-0.38           | 4.2×10 <sup>3</sup> | 0.69×10 <sup>-3</sup> |  |
|                  | (0.200 mM) |                                                        |                     |                       |  |
| NA               | (0.200 mM) | <i>I</i> <sub>0</sub> / <i>I</i> =2.92e [NA]/0.13-1.83 | 4.0×10 <sup>3</sup> | 0.73×10 <sup>-3</sup> |  |
| $NB^+$           | 85.98%     | <i>I</i> <sub>0</sub> / <i>I</i> =0.77e [NB]/0.24-2.30 | 1.9×10 <sup>3</sup> | 1.5×10 <sup>-3</sup>  |  |
|                  | (0.300 mM) |                                                        |                     |                       |  |
| NP               | 86.17%     | <i>I<sub>0</sub>/I=2</i> ,78e [NP]/0,17-1,82           | 2.3×10 <sup>3</sup> | 1.2×10-4              |  |
|                  | (0.300 mM) | ·                                                      |                     |                       |  |
| Fe <sup>3+</sup> | 96.08%     | L/I=0 11e [Fe3+]/0 01+1 26                             | 5.8×10 <sup>3</sup> | 7 2×10 <sup>-4</sup>  |  |
| 10               | (0.06 mM)  | 10/1 0.110 [105 / ]/0.01 / 1.20                        | 5.6~10              |                       |  |



Figure S1. The hydrogen bonds between adjacent 2D sheets.



**Figure S2.** PXRD patterns of the series complexes. Black: Simulated from the X-ray singlecrystal data; Red: observed for the as-synthesized solids.



Figure S3. The TG curve of complex 1.



Figure S4. The TG curve of complex 2.



Figure S5. The TG curve of complex 3.



Figure S6. Solid-state fluorescent emissions for 4'4-bpy at room temperature.



Figure S7. PXRD patterns of 3 after immersed in water solution for various conditions.



**Figure S8.** The  $K_{SV}$  plot for the fluorescence quenching of NT (a), NB (b), NP (c), NA (d) to aqueous@3 suspensions at low concentration.



**Figure S9.** The photoluminesecence intensity of **3** dissolved in the aqueous with the addition of various aromatic hydrocarbon compounds.



**Figure S10.** The PXRD patterns of **3** for the simulated, as-synthesized and after immerging in nitroaromatics and  $Fe^{3+}$  cations under water solutions.



Figure S11. Comparison of the luminescence intensity of 3 in H<sub>2</sub>O suspension with the introduction of other metal ions



Figure S12. The exaction and emission of solid-state photoluminescence spectra of 3.



**Figure S13.** Spectral overlap between the normalized emission spectrum of **3** and normalized absorption spectra of the nitroaromatics and  $Fe^{3+}$  cations.