Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Synthetic Control of the Polar Units in the Poly(thiophene carbazole)

Porous Networks for Effective CO₂ Capture

Chan Yao,^a Di Cui,^a Yiang Zhu,^b Wei Xie, ^a Shuran Zhang, ^a Guangjuan Xu, ^a and Yanhong Xu*^{a,c}

^a Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.

^b School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, Hubei Province, China.

^c School of Chemistry and Environmental Engineering, the Collaborative Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China.

* Corresponding Author. Email: xuyh198@163.com

Contents

Section A. Materials and methods

Section B. Synthetic procedures

Section C. FT-IR spectra

Section D. The Solid-UV spectra

Section E. TEM images

Section F. XPS spectrum

Section G. Powder X-ray diffraction patterns

Section H. TGA curves

Section I. CO₂, CH₄ and N₂ gas adsorption isotherms

Section J. Selectivity analyses

Section A. Materials and methods

1,4-Benzene diboronic acid, 2,5-dibromothiophene-3-carboxylic acid, 1,3,6,8tetrabromocarbazole and tetrakis(triphenylphosphine)palladium (0) were purchased from Alfa. Potassium carbonate was purchased from Energy chemical. All solvents used were purchased from Aladdin.

¹H NMR spectra were recorded on Bruker AvanceIII models HD 400 NMR spectrometers, where chemical shifts (δ in ppm) were determined with a residual proton of the solvent as standard. Fourier transform Infrared (FT-IR) spectra were recorded on a Perkin-elmer model FT-IR-frontier infrared spectrometer. The solution UV-visible analyzer was used for shimadzu UV-3600. The holder with solid samples of CMPs in KBr pellets was mounted onto the window of the integration sphere. X-ray photoelectron spectra (XPS) were recorded on an ESCALAB250Xi electron spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Field-emission scanning electron microscopy (FE-SEM) images were performed on a JEOL model JSM-6700 operating at an accelerating voltage of 5.0 kV. High-resolution transmission electron microscopy (HR-TEM) images were obtained on a JEOL model JEM-3200 microscopy. Powder X-ray diffraction (PXRD) data were recorded on a Rigaku model RINT Ultima III diffractometer by depositing powder on glass substrate, from $2\theta = 1.5^{\circ}$ up to 60° with 0.02° increment. TGA analysis was carried out using a Q5000IR analyser (TA Instruments) with an automated vertical overhead thermobalance. Before measurement, the samples were heated at a rate of 5 °C min⁻¹ under a nitrogen atmosphere.

Nitrogen sorption isotherms were measured at 77 K with ASIQ (iQ-2) volumetric adsorption analyzer. Before measurement, the samples were degassed in vacuum at 120 °C for more than 10 h. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas and pore volume. The Saito-Foley (SF) method was applied for the estimation of pore size and pore size distribution.

Carbon dioxide, methane and nitrogen sorption isotherms were measured at 273 K or 298 K with a Bel Japan Inc. model BELSORP-max analyzer, respectively. Before measurement, the samples were also degassed in vacuum at 120 °C for more than 10 h.

Section B. Synthetic procedures

Synthesis of SN@CMP-1

To a mixture of 1,4-benzene diboronic acid (BDA, 331.8 mg, 2 mmol) and 2,5-dibromothiophene-3-carboxylic acid (DBrTA, 572 mg, 2 mmol) in dimethylformamide (DMF, 20 mL), an aqueous solution of K_2CO_3 (2.0 M, 1.5 mL) and tetrakis(triphenylphosphine)palladium (0) (25 mg, 21.6 µmol) were added. The mixture was degassed and purged with N₂, and stirred at 150 °C for 48 h. The mixture was cooled to room temperature and poured into methanol. The precipitate was collected by filtration, and washed with H₂O, CHCl₃, THF and acetone sequentially. Further purification of the polymer was carried out by Soxhlet extraction with THF for 24 h. The product was dried in vacuum for 24 h at 70 °C and obtained as a fine green powder (yield: 254 mg, 57.7%). Elemental combustion analysis (%) calcd for $C_{22}H_{12}O_4S_2$ (based on the theoretical formula for an infinite SN@CMP-1 network without any unreacted end group): C 65.35, H 2.97, S 15.86; found: C 63.08, H 4.85, S 13.55.

Synthesis of SN@CMP-2

BDA (331.8 mg, 2 mmol), DBrTA (457.6 mg, 1.6 mmol) and 1,3,6,8-tetrabromocarbazole (TBrCz, 96.6 mg, 0.2 mmol) were used in this polymerization (yield: 82.5%), details as described for SN@CMP-1. Elemental combustion analysis (%) calcd for $(C_{22.4}H_{10.2}O_{3.2}S_{1.6}N_{0.2})n$: C 69.96, H 2.65, S 13.34, N 0.73; found: C 66.35, H 3.24, S 10.80, N 1.29.

Synthesis of SN@CMP-3

BDA (331.8 mg, 2 mmol), DBrTA (343.2 mg, 1.2 mmol) and TBrCz (193.2 mg, 0.4 mmol) were used in this polymerization (yield: 83.5%), details as described for SN@CMP-1. Elemental combustion analysis (%) calcd for ($C_{22.8}H_{12.4}O_{2.4}S_{1.2}N_{0.4}$)n: C 74.27; H 3.36, S 10.43, N 1.52; found: C 70.43; H 2.98, S 9.13, N 1.35.

Synthesis of SN@CMP-4

BDA (331.8 mg, 2 mmol), DBrTA (286 mg, 1 mmol) and TBrCz (241.4 mg, 0.5 mmol) were used in this polymerization (yield: 85.9%), details as described for SN@CMP-1. Elemental combustion analysis (%) calcd for $(C_{23}H_{12.5}O_2S_1N_{0.5})n$: C 76.78; H 3.47, S 8.91, N 1.95; found: C 71.23; H 2.68, S 8.05, N 2.07.

Synthesis of SN@CMP-5

BDA (331.8 mg, 2 mmol), DBrTA (228.8 mg, 0.8 mmol)and TBrCz (289.6 mg, 0.6 mmol) were used in this polymerization (yield: 83.7%), details as described for SN@CMP-1. Elemental combustion analysis (%) calcd for ($C_{23.2}H_{12.6}O_{1.6}S_{0.8}N_{0.6}$)n: C 79.41; H 3.59, S 7.31, N 2.39; found: C 80.15; H 2.92, S 6.87, N 3.01.

Synthesis of SN@CMP-6

BDA (331.8 mg, 2 mmol), DBrTA (114.4 mg, 0.4 mmol) and TBrCz (386.2 mg, 0.8 mmol) were used in this polymerization (yield: 82.3%), details as described for SN@CMP-1. Elemental combustion analysis (%) calcd for ($C_{23.6}H_{12.8}O_{0.8}S_{0.4}N_{0.8}$)n: C 85.10; H 3.84, S 3.85, N 3.36; found: C 81.33; H 3.20, S 3.06, N 2.70.

Synthesis of SN@CMP-7

BDA (331.8 mg, 2 mmol) and TBrCz (483 mg, 1 mmol) were used in this polymerization (yield: 85.4%), details as described for SN@CMP-1. Elemental combustion analysis (%) calcd for ($C_{24}H_{13}N$)n:

C 91.4, H 4.15, N 4.44; found: C 87.81; H 4.59; N 3.40.

Section C. FT-IR spectra

Figure S1. FT-IR spectra of 2,5-dibromothiophene-3-carboxylic acid (DBrTA) 1,3,6,8-tetrabromocarbazole (TBrCz), and copolymers SN@CMP-1-7 networks.

Figure S2. Electronic absorbance spectra of copolymer SN@CMP1-7 in the solid state.

Section E. TEM images

Figure S3. TEM images of the copolymer networks (a) SN@CMP-1, (b) SN@CMP-2, (c) SN@CMP-3, (d) SN@CMP-4, (e) SN@CMP-5, (f) SN@CMP-6, and (g) SN@CMP-7 (5 nm width).

Section F. XPS spectrum

Figure S4. XPS survey spectrum of SN@CMP-1-7.

Figure S5. Powder X-ray diffraction profiles of copolymer networks SN@CMP-1-7.

Section H. TGA curves

Figure S6. TGA curves of SN@CMP-1-7.

Section I. CO₂, CH₄ and N₂ gas adsorption isotherms

Figure S7. CO₂, CH₄ and N₂ gas adsorption isotherms collected at 1.05 bar and 273 K.

Section J. Selectivity analyses

Figure S8. CO₂/CH₄ initial slop selectivity studies for SN@CMP-1-7 at 273 K and 1.05 bar.

Figure S9. CO₂/N₂ initial slop selectivity studies for SN@CMP-1-7 at 273 K and 1.05 bar.

Figure S10. CO₂ reusability of the Poly(thiophene carbazole) CMPs.

Scheme S1. Synthetic route of copolymerization for SN@CMP-1-7. Table S1. Copolymerization with different molar ratios of two halogen monomers.

Copolymers	HO HO Immol]	Br S Br HOOC	Br H Br Br Br	<i>S</i> _{ВЕТ} ^а [m ² g ⁻¹]	S _{Micro} b [m²g⁻¹]	V _{Total} c [cm ³ g ⁻¹]	V _{Micro} d [cm ³ g ⁻¹]
SN@CMP-1	2	2	0	89	19	0.12	0.02
SN@CMP-2	2	1.6	0.2	590	548	0.44	0.23
SN@CMP-3	2	1.2	0.4	804	626	0.78	0.38
SN@CMP-4	2	1.0	0.5	1143	885	1.04	0.62
SN@CMP-5	2	0.8	0.6	1356	1030	1.42	0.85
SN@CMP-6	2	0.4	0.8	1172	920	1.16	0.76
SN@CMP-7	2	0	1.0	804	596	0.80	0.54

^a Surface area calculated from the N₂ adsorption isotherm using the BET method. ^b Micropore surface area calculated from the N₂ adsorption isotherm using the *t*-plot method. ^c Total pore volume at $P/P_0 = 0.99$. ^d Micropore volume derived using the *t*-plot method based on the Halsey thickness equation.

Copolymers	CO ₂ uptake ^a	CO ₂ uptake ^b	CH4 uptake ^c	N ₂ uptake ^d	Selectivity ^e	
	[cm ³ g ⁻¹]	[cm ³ g ⁻¹]	[cm ³ g ⁻¹]	[cm ³ g ⁻¹]	CO ₂ /CH ₄	CO_2/N_2
SN@CMP-1	24.3	15.1	8.4	2.6	4.6	22.6
SN@CMP-2	34.4	23.8	7.8	2.9	7.7	27.7
SN@CMP-3	53.5	33.5	11.4	4.3	6.9	36.9
SN@CMP-4	58.4	38.1	9.8	4.6	6.0	38.0
SN@CMP-5	64.9	44.8	12.2	4.1	6.5	56.5
SN@CMP-6	86.5	53.4	11.4	5.2	4.5	61.5
SN@CMP-7	61	43.0	12.8	3.4	6.1	36.8

Table S2. Summary of gas uptakes for the copolymer networks.

^a Data collected at 273 K and 1.0 bar. ^b Data collected at 298 K and 1.0 bar. ^{c,d} Data collected at 273 K and 1.0 bar. ^e Adsorption selectivity based on Henry's law.

Kinetics of CO₂ adsorption and desorption

To quantify the surfactant effect on the rate of the CO_2 -adsorption processes, the kinetics of adsorption were analyzed by using the double-exponential kinetic model. According to this model, the mass of CO_2 adsorbed as a function of time is expressed by eq. 1:

$$\frac{M_t}{M_e} = A_S \left(1 - \exp^{(-k_S t)} \right) + A_D \left(1 - \exp^{(-k_D t)} \right)$$
eq. 1

In eq. 1, M_t and M_e represent the experimental mass gain due to CO₂ sorption at time t and after reaching equilibrium, respectively. The experimental M_e , M_t , and the time of adsorption (t) were fitted with eq. 1 by using the Sigma Plot 2012 software with a tolerance value set at 1×10^{-10} . As shown in eq. 1, there were four fitting parameters, namely, A_s , A_D , k_s , and k_D . A_s and A_D are defined as the relative contributions of the surface and diffusion barriers, respectively, controlling the overall adsorption process, in which the sum of A_s and A_D is equal to 1, and k_s , and k_D are defined as the corresponding surface and diffusion rate constants, respectively.

CO₂ desorption obeyed the following first-order kinetic relationship:

$$M_{\rm des} = M_{\rm o} e^{-k_{\rm des}t}$$
eq. 2

In which M_{des} is the mass of CO₂ desorbed at time *t* and M_o is the initial mass of previously adsorbed CO₂, i.e., the mass at maximum adsorption, and k_{des} is the desorption rate constant. The relationship between the specific rate of desorption as a function of temperature is described by the Arrhenius equation as follows:

$$k_{\rm des} = A e^{-\frac{E_a}{RT}}$$
 eq. 3

In which A is the Arrhenius pre-exponential constant, E_a is the activation energy of desorption, R is the universal gas constant, and T is the temperature.

Calculations of adsorption selectivity

Adsorption selectivities can be calculated by a virial fitting method based on the following equation:

$$\ln N / P = A_0 + A_1 N + A_2 N^2 + A_3 N^3 + \dots \qquad \text{eq. 4}$$

In eq. 4, P is pressure, N is amount adsorbed and A_0 , A_1 etc. present virial coefficients. A_0 is related to adsorbate–adsorbent interactions, and A_1 describes adsorbate–adsorbate interactions. The Henry's Law

constant (K_H) is equal to $\exp(A_0)$.

The Henry's Law selectivity for gas component i over j is calculated based on eq. 5:

$$S_{ij} = K_{Hi} / K_{Hj} \qquad \text{eq. 5}$$