High photoluminescence sensor for selective detection of cartap by functionalized VBimBF₄B ionic liquid-strengthened sulfurdoped carbon nanodots

Ying Zhang^a, Dianwei Zhang^a, Jingmin Liu^b, Shuo Wang^{a,b}, Huilin Liu^{a*}

^a Beijing Advanced Innovation Center for Food Nutrition and Human Health,

Beijing Engineering and Technology Research Center of Food Additives, Beijing

Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.

^b Tianjin Key Laboratory of Food Science and Health, School of Medicine,

Nankai University, Tianjin, 300071, China.

*Corresponding author: Huilin Liu

Tel: (86 10) 68984545;

Fax: (86 10) 68985456;

Email: liuhuilin@btbu.edu.cn

g. S1 The ultraviolet absorption spectra of CP (a) and S-Cdots (b).

Fi

Fig. S2 FL spectra of the control polymer (a), VBimBF₄B-strengthened S-Cdots (b), VBimBF₄B-strengthened S-Cdots after adding CP (c).

Fig. S3 FL spectra of the S-Cdots before (b) and after the addition of VBinBF₄B (a) and CP (c). The inset presents the calibration plots for CP on S-Cdots.

Fig. S4 The photoluminescence emission spectra of the $VBimBF_4B$ with the different excitations.

ig. S5 Adsorption time of CP (0.1 mg/L) on VBimBF₄B-strengthened S-Cdots.

F

Fig. S6 Adsorption capacity of VBimBF₄B-strengthened S-Cdots.

Cartap	VBimBF ₄ B	MAA	EGDMA	$K_{\rm SV}$	$K_{\rm SV}^*$	$K_{\rm SV}/K_{\rm SV}^*$
1	2	2	5	0.0065 ± 0.0001	0.0056 ± 0.0005	1.14±0.02 ^a
1	3	3	7.5	0.0112 ± 0.0001	0.0056 ± 0.0005	$2.02{\pm}0.03^{b}$
1	4	4	10	0.0145 ± 0.0003	0.0056 ± 0.0005	2.63±0.05°
1	5	5	12.5	$0.0154 {\pm} 0.0001$	0.0056 ± 0.0005	2.74±0.01°
1	6	6	15	$0.0154{\pm}0.0001$	0.0056 ± 0.0005	2.73±0.03°

Table S1 Optimization of the molecular ratio of cartap and VBimBF₄B/MAA.

*K*sv is the slope of the curve between the analyte concentrations and photoluminescence response in VBimBF₄B-strengthened S-Cdots and K^*_{SV} is the slope of the curve between the analyte concentrations and photoluminescence response in the control groups.

Table S2 Optimization of the molecular ratio of EGDMA.

Cartap	VBimBF ₄ B	MAA	EGDMA	$K_{\rm SV}$	$K_{\rm SV}^*$	$K_{\rm SV}/K_{\rm SV}^*$
1	4	4	5	0.0079±0.003	0.0053±0.0003	1.49±0.06ª
1	4	4	10	0.0145±0.0002	0.0056±0.0005	2.63±0.05 ^b
1	4	4	15	0.0085 ± 0.0005	0.0054 ± 0.0004	1.58±0.08ª
1	4	4	20	0.0068±0.0002	0.0049±0.001	1.38±0.04°

*K*sv is the slope of the curve between the analyte concentrations and photoluminescence response in VBimBF₄B-strengthened S-Cdots and K^*_{SV} is the slope of the curve between the analyte concentrations and photoluminescence response in the control groups.

Actual concentration ^a	Detected concentration (mean, n=3)	Recovery (%)	
10	8.84	88.38±0.004	
30	23.25	77.48±0.053	
50	49.34	98.68±0.404	
70	58.60	83.71±0.034	

Table S3 Spiked recovery results for the determination of cartap in tap water.

^a The concentration unit is $\mu g/L$