Fine-tuning the optoelectronic chattels of fluoreno-thiophene centred molecular semiconductors through symmetric and asymmetric push-pull switch

Chitra Kumar,^{*a*} Abbasriyaludeen Abdul Raheem,^{*a,b*} Karpagam Pandian,^{*a*} Vrinda Nandakumar,^{*a*} Ramasamy Shanmugam,^{*c*} and Chandrasekar Praveen^{*a,b**}

 ^aFunctional Materials Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Tamil Nadu, India
 ^bAcademy of Scientific and Innovative Research (AcSIR), Karaikudi-630003, Tamil Nadu, India
 ^cDepartment of Chemistry, Thiagarajar College, Madurai-625009, Tamil Nadu, India
 *Corresponding author: chandrasekar.praveen@gmail.com

Table of contents

I. ¹ H NMR and ¹³ C NMR spectra of synthesized compounds	S 1
II. Solution and solid state UV-vis spectra	S 9
III. PL and PLE spectra and data	S 10
IV. Computed UV-vis spectrum and DOS	S 11
V. TGA of chromophores	S13
VI. DSC of chromophores	S16
VII. Current-voltage curve of as-cast film	S19
VIII. AFM images of pristine and annealed samples	S20
IX. XRD of pristine and annealed films	S21
X. Cartesian coordinates	S22

¹H NMR spectrum of **CHO-CHO** in $CDCl_3$

¹³C NMR spectrum of CHO-CHO in CDCl₃

¹H NMR spectrum of **CN-CN** in CDCl₃

¹³C NMR spectrum of CN-CN in CDCl₃

DEPT-135 spectrum of CN-CN in CDCl₃

¹H NMR spectrum of **TPA-TPA** in CDCl₃

¹³C NMR spectrum of **TPA-TPA** in CDCl₃

DEPT-135 spectrum of TPA-TPA in $CDCl_3$

¹H NMR spectrum of **CN-CHO** in CDCl₃

¹³C NMR spectrum of **CN-CHO** in CDCl₃

¹H NMR spectrum of **TPA-CN** in CDCl₃

¹³C NMR spectrum of **TPA-CN** in CDCl₃

DEPT-135 spectrum of **TPA-CN** in CDCl₃

Fig S1. UV-vis spectra of compounds in CHCl₃ at different concentration

Fig S2. UV-vis spectra of CHO-CHO as thin film

Fig S3. PL emission and excitation spectra of compounds in CHCl₃ at different concentration

Table S1 Photoexcitation and emission data						
	$\lambda_{ m em}({ m nm})^a$	$\lambda_{ ext{ex}}(ext{nm})^{b}$	<i>C</i> (M) ^{<i>c</i>}	Stokes shift (cm ⁻¹)	φ (%) ^d	
ΤΡΑ-ΤΡΑ	493	339	5.0 X 10⁻ ⁶	178600	18.3	
CN-CN	529	353	1.0 X 10⁻⁵	169500	14.2	
TPA-CN	584	337	3.0 X 10 ⁻⁵	94300	21.1	
^a Emission in solution; ^b Excitation from emission in solution; ^c Concentration used for UV-vis was retained;						
d	^d Quantum yields were measured using quinine sulphate (ϕ = 55%) as reference					

Fig S4. Computed gas phase UV-vis spectrum of a) **TPA-TPA**; b) **CN-CN**; c) **TPA-CN** (top); Total Density of states (TDOS) & band structure of a) **TPA-TPA**; b) **CN-CN**; c) **TPA-CN** obtained at B3LYP/6-31G** (d,p) basis set

Fig S5. Theoretical UV-vis spectrum in chloroform under IEFPCM model of a) **TPA-TPA**; b) **CN-CN**; c) **TPA-CN** (top); Total Density of states (TDOS) & band structure of a) **TPA-TPA**; b) **CN-CN**; c) **TPA-CN** obtained at CAM-B3LYP functional

Sample: S-1[VNC010] Size: 2.5110 mg Method: N2 Comment: K.Chitra Directory: C:\DATA\July 2018 Operator: Er P.Murugesan Run Date: 11-Jul-2018 12:27 Instrument: SDT Q600 V8.3 Build 101

ΤΡΑ-ΤΡΑ

Sample: S-1[PCR 55] Size: 1.8560 mg Method: N2 Comment: K.Chitra Directory: C:\DATA\July 2018 Operator: Er P.Murugesan Run Date: 05-Jul-2018 15:11 Instrument: SDT Q600 V8.3 Build 101

CN-CN

Directory: C:\DATA\October 2018 Operator: Er P.Murugesan Run Date: 04-Oct-2018 13:13 Instrument: SDT Q600 V8.3 Build 101

TPA-CN

Fig S6. TGA curves TPA-TPA (top); b) CN-CN (middle) and c) TPA-CN (centre)

Sample: S-1[VNC010] Size: 2.5110 mg Method: N2 Comment: K.Chitra **60** ·

ΤΡΑ-ΤΡΑ

Sample: S-1[PCR 55] Size: 1.8560 mg Method: N2 Comment: K.Chitra Directory: C:\DATA\July 2018 Operator: Er P.Murugesan Run Date: 05-Jul-2018 15:11 Instrument: SDT Q600 V8.3 Build 101

CN-CN

TPA-CN

Fig S7. DSC thermogram of TPA-TPA (top); b) CN-CN (middle) and c) TPA-CN (centre)

Fig S8. J-V curve of 1:1 blend of as-cast TPA-CN:PCBM

Fig S9 Tapping mode AFM height images (5 X 5 μ M) of TPA-TPA:PCBM: (a) pristine film; (b) annealed film at 120 °C for 5 min

Fig S10 Tapping mode AFM height images (5 X 5 μ M) of CN-CN:PCBM: (a) pristine film; (b) annealed film at 120 °C for 5 min

Fig S11 XRD of pristine and annealed films at 120 °C for 5 min

ΤΡΑ-ΤΡΑ			
Symbol	Х	Y	Z
С	2.95771	-1.3135	-0.3904
С	3.43248	0.00323	-0.5583
С	2.50304	1.06757	-0.5261
С	1.14964	0.81264	-0.3587
С	0.70063	-0.5117	-0.1675
С	1.60682	-1.5743	-0.1858
С	-0.0195	1.80465	-0.2709
С	-1.1896	0.84681	-0.0003
С	-0.7427	-0.4911	0.04792
С	-2.5426	1.12982	0.12063
С	-3.4729	0.0895	0.34296
С	-3.001	-1.237	0.41036
С	-1.6505	-1.5322	0.25514
С	0.25069	2.78152	0.91523
С	-0.2894	2.53852	-1.621
С	-0.795	3.86603	1.20786
С	0.76291	3.54083	-2.1133
С	-0.3485	4.78721	2.35399
С	0.33177	4.23015	-3.4176
С	-1.3068	5.94859	2.66636
С	1.37369	5.19317	-4.01
С	-2.6819	5.51976	3.20434
С	1.61973	6.45904	-3.1725
С	-3.6039	6.68734	3.62409
С	2.60232	7.47454	-3.7981
С	4.07573	7.33765	-3.3752
С	-3.5491	7.08486	5.11028
С	-2.2016	7.61368	5.61336
С	4.76928	6.03028	-3.7737
С	-4.8941	0.40219	0.49729
С	4.85441	0.28264	-0.7604
С	-5.4748	1.58018	0.91895
С	-6.8895	1.54149	0.95274
С	-7.4293	0.33186	0.55812
S	-6.1406	-0.7809	0.12476
С	5.43938	1.38232	-1.3535
С	6.85366	1.33457	-1.3804
С	7.38954	0.1951	-0.8104
S	6.09728	-0.8355	-0.215
С	-8.8305	-0.0032	0.49378

Table S2 Cartesian coordinates

С	8.78954	-0.1312	-0.6968
С	-9.3634	-1.1867	0.10984
С	9.31832	-1.2581	-0.1654
С	10.7307	-1.5979	-0.0406
С	-10.777	-1.5389	0.04216
С	11.0928	-2.824	0.55085
С	12.4198	-3.2024	0.7078
С	13.4559	-2.3666	0.25987
С	13.1101	-1.1413	-0.3419
С	11.7825	-0.7671	-0.4803
С	-11.146	-2.8079	-0.4447
С	-12.475	-3.2	-0.5445
С	-13.504	-2.3348	-0.1394
С	-13.151	-1.0669	0.36072
С	-11.822	-0.6802	0.44158
Ν	14.8131	-2.7439	0.40517
С	15.7926	-1.7711	0.75003
С	15.2029	-4.1003	0.22303
Ν	-14.863	-2.7254	-0.2257
С	-15.854	-1.7829	-0.619
С	-15.243	-4.0654	0.06539
С	-17.089	-1.7306	0.04683
С	-18.061	-0.8147	-0.3489
С	-17.816	0.0737	-1.3978
С	-16.585	0.02936	-2.0561
С	-15.613	-0.8954	-1.68
С	-16.171	-4.7341	-0.7483
С	-16.551	-6.0418	-0.4523
С	-16.002	-6.7101	0.64343
С	-15.072	-6.0501	1.44926
С	-14.7	-4.7364	1.17248
С	17.0414	-1.7617	0.1086
С	18.0022	-0.8147	0.45665
С	17.7315	0.14691	1.43226
С	16.4872	0.14489	2.06579
С	15.5265	-0.8095	1.73789
С	16.1116	-4.7039	1.1066
С	16.4999	-6.0287	0.91769
С	15.979	-6.7778	-0.139
С	15.0685	-6.1822	-1.0143
С	14.6876	-4.8529	-0.8444
Н	3.6587	-2.1417	-0.4319
Н	2.86864	2.0856	-0.6025
Н	1.26813	-2.5968	-0.0454

Н	-2.9084	2.14505	0.01305
Н	-3.7037	-2.0429	0.59922
Н	-1.3135	-2.564	0.29901
Н	1.21526	3.27154	0.73247
Н	0.39455	2.17402	1.81732
Н	-0.4376	1.77133	-2.3911
Н	-1.2513	3.05878	-1.5327
Н	-1.7503	3.39711	1.46484
Н	-0.9749	4.47606	0.31252
Н	0.95168	4.29725	-1.3422
Н	1.71521	3.02552	-2.2869
Н	0.63715	5.20398	2.10569
Н	-0.2007	4.18644	3.26265
Н	0.10219	3.45726	-4.1632
Н	-0.6085	4.77441	-3.2472
Н	-0.8212	6.6125	3.39041
Н	-1.454	6.55231	1.75912
Н	1.03469	5.5034	-5.0077
Н	2.31443	4.6517	-4.1694
Н	-3.1908	4.93009	2.43235
Н	-2.545	4.83808	4.05644
Н	1.97448	6.18938	-2.1686
Н	0.6492	6.95077	-3.0213
Н	-4.6429	6.41787	3.39675
Н	-3.3829	7.56692	3.00265
Н	2.53098	7.42227	-4.8938
Н	2.27887	8.48756	-3.528
Н	4.63426	8.17804	-3.8077
Н	4.14315	7.46245	-2.2856
Н	-4.3166	7.8496	5.28764
Н	-3.8439	6.21783	5.71738
Н	-2.2773	7.94318	6.65509
Н	-1.4203	6.84823	5.57132
Н	-1.8622	8.46992	5.0191
Н	5.83139	6.05609	-3.5075
Н	4.32844	5.16412	-3.2699
Н	4.70232	5.85573	-4.8537
Н	-4.8944	2.44145	1.22873
Н	-7.5078	2.37441	1.26982
Н	4.86263	2.19124	-1.7868
Н	7.47455	2.10896	-1.8179
Н	-9.4879	0.81235	0.78965
Н	9.44999	0.63886	-1.0914
Н	-8.682	-1.9823	-0.1905

Н	8.63379	-2.0136	0.2195
Н	10.3099	-3.4874	0.90969
Н	12.6613	-4.1483	1.18015
Н	13.8956	-0.4863	-0.7034
Н	11.5609	0.18392	-0.9546
Н	-10.368	-3.495	-0.7683
Н	-12.723	-4.1799	-0.9376
Н	-13.931	-0.389	0.69044
Н	-11.594	0.30237	0.8428
Н	-17.278	-2.4102	0.87083
Н	-19.011	-0.7872	0.17693
Н	-18.574	0.7906	-1.6985
Н	-16.383	0.70848	-2.8793
Н	-14.664	-0.937	-2.2041
Н	-16.591	-4.2233	-1.6084
Н	-17.27	-6.5445	-1.0923
Н	-16.294	-7.7314	0.86668
Н	-14.641	-6.5545	2.30987
Н	-13.987	-4.2229	1.80952
Н	17.2511	-2.4986	-0.6594
Н	18.9633	-0.8213	-0.0495
Н	18.4802	0.88757	1.69548
Н	16.2649	0.8815	2.83255
Н	14.5665	-0.8171	2.24302
Н	16.5088	-4.1293	1.93648
Н	17.2039	-6.4805	1.61067
Н	16.2787	-7.8118	-0.2789
Н	14.6606	-6.7501	-1.8456
Н	13.9903	-4.3897	-1.5343

CN-CN

-	0.1	0.1	
Symbol	Х	Y	Z
С	2.96556	-2.9102	0.2229
С	3.45265	-1.5988	0.04468
С	2.53016	-0.5395	-0.1082
С	1.16685	-0.7956	-0.1021
С	0.70164	-2.1124	0.10224
С	1.60092	-3.1701	0.26085
С	-0.0048	0.18943	-0.2192
С	-1.1959	-0.7645	-0.0516
С	-0.7568	-2.0945	0.12535
С	-2.5542	-0.4914	-0.1214

С	-3.4969	-1.5332	0.02715
С	-3.036	-2.851	0.22568
С	-1.6766	-3.1368	0.26735
С	0.10839	1.23038	0.93817
С	-0.1004	0.8487	-1.6309
С	-0.9825	2.30465	1.03973
С	1.01337	1.81934	-2.0451
С	-0.7042	3.30406	2.17413
С	0.73925	2.45135	-3.4192
С	-1.7431	4.42999	2.30683
С	1.86512	3.35713	-3.9443
С	-3.148	3.96032	2.71939
С	2.07094	4.65056	-3.1384
С	-4.1742	5.09625	2.93365
С	3.14813	5.60538	-3.7005
С	4.56632	5.4366	-3.1271
С	-4.311	5.61585	4.37622
С	-3.0631	6.27624	4.97196
С	5.24812	4.0929	-3.4079
С	-4.9271	-1.2323	-0.0323
С	4.88842	-1.3208	0.02104
С	-5.5583	-0.0269	0.24095
С	-6.9527	-0.0816	0.08766
С	-7.4289	-1.3288	-0.3075
S	-6.0888	-2.4496	-0.5008
С	5.54053	-0.2429	-0.5616
С	6.93438	-0.2822	-0.4
С	7.38961	-1.3899	0.3101
S	6.03023	-2.3936	0.79344
С	-8.808	-1.6155	-0.5193
С	8.76442	-1.6379	0.58809
С	-9.4325	-2.7792	-0.8947
С	9.36961	-2.6752	1.25368
С	-10.856	-2.8033	-1.041
Ν	-12.014	-2.8137	-1.158
С	10.7929	-2.6879	1.39996
Ν	11.9514	-2.6901	1.5146
С	8.65716	-3.7742	1.82471
Ν	8.07787	-4.6709	2.29034
С	-8.7408	-4.0019	-1.1554
Ν	-8.1784	-4.9994	-1.3678
Н	3.6659	-3.7341	0.32017
Н	2.90125	0.4754	-0.1947
Н	1.24729	-4.1857	0.41071

	2,0062	0 51222	0 2257
	-2.9002	0.51555	-0.3257
н	-3./52/	-3.0551	0.36111
н	-1.3427	-4.16	0.41
н	1.0815	1.72841	0.84538
Н	0.1491	0.6/441	1.88296
Н	-0.162	0.04124	-2.371
Н	-1.0601	1.37711	-1.6886
Н	-1.9523	1.82532	1.2074
Н	-1.0641	2.85799	0.09459
Н	1.12549	2.60902	-1.2927
Н	1.97243	1.28877	-2.089
Н	0.28441	3.75449	2.01188
Н	-0.6351	2.76009	3.12691
Н	0.5655	1.64756	-4.147
Н	-0.197	3.02611	-3.3738
Н	-1.3721	5.15951	3.03498
Н	-1.8157	4.97037	1.35197
Н	1.63496	3.63271	-4.982
Н	2.79798	2.78143	-3.9888
Н	-3.5309	3.28397	1.94476
Н	-3.0769	3.35378	3.63386
Н	2.31258	4.41488	-2.0931
Н	1.10856	5.17915	-3.1078
Н	-5.164	4.74227	2.61939
Н	-3.9332	5.93483	2.26488
Н	3.18322	5.5107	-4.7951
Н	2.83788	6.63866	-3.5022
Н	5.19532	6.24021	-3.5312
Н	4.5302	5.60195	-2.0414
Н	-5.1377	6.33756	4.40074
Н	-4.6207	4.78306	5.02252
Н	-3.2767	6.68639	5.96454
Н	-2.2384	5.56565	5.08592
Н	-2.709	7.10064	4.34234
Н	6.27901	4.09485	-3.0379
Н	4.72766	3.26151	-2.921
Н	5.28221	3.8787	-4.4821
н	-5.026	0.85496	0.57525
Н	-7.616	0.757	0.27005
н	5.02337	0.53061	-1.1157
н	7.61198	0.46552	-0.7977
н	-9.4662	-0.7657	-0.3542
н	9.43704	-0.8737	0.20577

Symbol	Х	Y	Z
С	-5.9026	-3.2086	-0.2753
С	-6.6355	-2.0334	-0.0108
С	-5.9442	-0.8039	0.08859
С	-4.5657	-0.7642	-0.0526
С	-3.8543	-1.9499	-0.3409
С	-4.524	-3.172	-0.4479
С	-3.6215	0.44575	-0.0169
С	-2.2773	-0.2316	-0.3207
С	-2.442	-1.6221	-0.4977
С	-1.0067	0.32462	-0.3585
С	0.12008	-0.4866	-0.6216
С	-0.0722	-1.8699	-0.8196
С	-1.3381	-2.4402	-0.7504
С	-4.0652	1.4468	-1.1286
С	-3.5304	1.10116	1.39643
С	-3.2355	2.72418	-1.3153
С	-4.7779	1.80829	1.94242
С	-3.84	3.64658	-2.3859
С	-4.5097	2.46559	3.30564
С	-3.0835	4.96814	-2.6008
С	-5.7452	3.09492	3.97037
С	-1.6683	4.80913	-3.1806
С	-6.3316	4.29319	3.20802
С	-0.9325	6.13648	-3.473
С	-7.4188	5.09907	3.94217
С	-8.7571	4.37385	4.20142
С	-1.0838	6.69198	-4.9007
С	-2.5016	7.09686	-5.3179
С	-8.8336	3.57678	5.51015
С	1.45296	0.11308	-0.6773
С	-8.0868	-2.0655	0.15521
С	1.79795	1.41604	-0.9711
C	3.19096	1.66221	-0.9315
С	3.94935	0.55341	-0.6044
S	2.89831	-0.828	-0.3361
C	-8.8927	-1.1453	0.81347
C	-10.255	-1.4779	0.78665
C	-10.536	-2.6618	0.10845
S	-9.0485	-3.3596	-0.5187
C	5.38525	0.50111	-0.4802
С	-11.847	-3.1948	-0.0374

TPA-CN

С	6.12864	-0.5782	-0.1412
С	-12.286	-4.3408	-0.6557
С	7.57829	-0.6456	-0.0063
С	8.17117	-1.8383	0.45189
С	9.54398	-1.9608	0.61998
С	10.3974	-0.8871	0.31493
С	9.82064	0.30733	-0.16
С	8.44757	0.42329	-0.3092
Ν	11.7982	-1.0011	0.47354
С	12.5631	0.10997	0.92837
С	12.4553	-2.2323	0.18981
С	13.793	0.41773	0.32588
С	14.5465	1.49786	0.78051
С	14.0822	2.29749	1.82675
С	12.8556	1.9979	2.42269
С	12.1032	0.90885	1.98738
С	13.4352	-2.7311	1.062
С	14.0866	-3.9289	0.77471
С	13.7618	-4.6562	-0.372
С	12.7816	-4.1658	-1.2372
С	12.1377	-2.9599	-0.968
С	-13.683	-4.6505	-0.6603
Ν	-14.821	-4.8943	-0.6591
С	-11.422	-5.2708	-1.3106
Ν	-10.721	-6.0319	-1.8452
Н	-6.4198	-4.1615	-0.3336
Н	-6.5095	0.10871	0.23977
Н	-3.9811	-4.0877	-0.6619
Н	-0.8565	1.37855	-0.1527
Н	0.78419	-2.4996	-1.0407
Н	-1.4584	-3.5103	-0.8933
Н	-5.1048	1.73326	-0.9257
Н	-4.089	0.89804	-2.0783
Н	-3.226	0.32104	2.10509
Н	-2.7031	1.82117	1.37615
Н	-2.2119	2.45742	-1.597
Н	-3.1668	3.27902	-0.37
Н	-5.1257	2.56656	1.23083
Н	-5.5958	1.08613	2.05676
Н	-4.8772	3.87697	-2.1066
Н	-3.8987	3.10322	-3.3397
Н	-4.0924	1.70933	3.98379
Н	-3.7305	3.2327	3.19138
Н	-3.6814	5.60572	-3.2613

Н	-3.0172	5.5071	-1.6446
Н	-5.4687	3.42008	4.98233
Н	-6.5111	2.31917	4.09926
Н	-1.0661	4.22411	-2.4747
Н	-1.7151	4.20709	-4.0997
Н	-6.7393	3.95747	2.24473
Н	-5.5089	4.97977	2.96186
Н	0.1399	5.99146	-3.2924
Н	-1.2548	6.89831	-2.7488
Н	-7.0173	5.47128	4.89549
Н	-7.6227	5.99154	3.33717
Н	-9.5599	5.12154	4.21557
Н	-8.9822	3.71503	3.35089
Н	-0.4257	7.56548	-4.9966
Н	-0.6985	5.94741	-5.6108
Н	-2.4977	7.55929	-6.3106
Н	-3.1766	6.23647	-5.3642
Н	-2.9319	7.82135	-4.6169
Н	-9.8242	3.12702	5.6376
Н	-8.0971	2.76975	5.55224
Н	-8.6548	4.22853	6.37285
Н	1.06704	2.16979	-1.2403
Н	3.63919	2.62647	-1.1452
Н	-8.4981	-0.2767	1.32564
Н	-11.033	-0.8867	1.25851
Н	5.8761	1.45193	-0.6792
Н	-12.624	-2.5863	0.41971
Н	5.60928	-1.513	0.06859
Н	7.53305	-2.6826	0.70029
Н	9.96326	-2.8894	0.99114
Н	10.4632	1.14232	-0.417
Н	8.04631	1.35758	-0.6897
Н	14.1509	-0.193	-0.4961
Н	15.4961	1.72248	0.30335
Н	14.6689	3.14239	2.17375
Н	12.4857	2.6057	3.24346
Н	11.1577	0.67049	2.4629
Н	13.6813	-2.1751	1.96044
Н	14.8426	-4.3012	1.46001
Н	14.2663	-5.5925	-0.5891
Н	12.5247	-4.7166	-2.1375
Н	11.3873	-2.5752	-1.6505