Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

LCST Behavior Induced by Size-Matching Selectivity from Low Molecular Weight Monomer Systems

Zheng Luo,¹ Yan Deng,¹ Xing Li,¹ Qiao Zhang,¹ Jianfeng Wu,² Zhenhui Qi,² Lin Jin,^{*2} Shengyi Dong^{*1}

¹College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China, email: dongsy@hnu.edu.cn

²Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China, email: jinlin@nwpu.edu.cn

S1
S1
S3
S7
S8

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. **BC4-CN**, **BC5-CN**, **BC6-CN**, **BC7-CN**, **TC7** were prepared according to the reported methods.^{1–3} ¹H NMR spectra were collected on a Varian Unity INOVA-400 or Bruker-AV400 with TMS as the internal standard. ¹³C NMR spectra were recorded on a Bruker-AV400 spectrometer at 125 MHz. UV/Vis spectra were obtained on a UV2600 spectrometer with a temperature controllable system at a heating rate of 1.0 °C/min or 0.1 °C/min. Unless otherwise stated, samples were dispersed in Milli-Q water. MALDI-TOF mass spectrometry was performed on a Shimadzu Biotech AXIMA Performance instrument.

2. NMR spectra of BC4-CN, BC5-CN, BC6-CN and BC7-CN

BC4-CN, **BC5-CN**, **BC6-CN**, **BC7-CN** were prepared according reported methods,^{1,2} and their proton NMR spectras were consistent with reported data.

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃, room temperature) of BC4-CN

Figure S2. ¹H NMR spectrum (400 MHz, CDCl₃, room temperature) of BC5-CN

Figure S3. ¹H NMR spectrum (400 MHz, D₂O, room temperature) of BC6-CN

Figure S4. ¹H NMR spectrum (400 MHz, CDCl₃, room temperature) of BC7-CN

3. NMR spectra of TC4, TC5, TC6 and TC7

TC7 were prepared according to reported method,³ and its proton NMR spectrum in D_2O was additionally prepared.

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃, room temperature) of TC4

Figure S7. ¹H NMR spectrum (400 MHz, D_2O , room temperature) of **TC4** Due to the poor solubility in D_2O , it is difficult to get clear integral of each peaks.

Figure S11. ¹³C NMR spectrum (125 MHz, CDCl₃, room temperature) of TC6

Figure S12. ¹H NMR spectrum (400 MHz, D₂O, room temperature) of TC7

4. Partial proton NMR spectra of TC4, TC5, TC6 and TC7 in D_2O

Figure 13. Partial proton NMR (400 MHz, D₂O, room temperature) spectra of (a)

TC4, (b) TC5, (c) TC6 and (d) TC7.

5. Solubility tests of TC4, TC5, TC6 and TC7 in water

Figure S14. Solubility test of TC7 in water.

Excess TC4/TC5 was added to a vial with 2 mL water. The mixture was stirred for two days. The upper layer solution was removed and water was evaporated to yield TC4/TC5. Based on the weight of the upper layer solution and the obtained TC4/TC5. Their solubility can be calculated. The solubility of TC4 and TC5 in water are 0.8 mg/mL and 2.3 mg/mL, respectively. For TC6/TC7, no matter how much it is added, a viscous but still transparent liquid is prepared, and no insoluble TC6/TC7 is found.

6. Reference

(1) Sayfullina, N. J.; Tashmukhamedova, A. K.; Shakhidoyatov. K. M. Anomalous Behavior of the Amides of Benzo- and Dibenzocrown Thiocarboxylic Acids under the Conditions of Methylation. *Chem. Heterocycl. Compd.* **2007**, *43*, 282–285.

(2) Qi, Z.; de Molina, P. M.; Jiang, W.; Wang, Q.; Nowosinski, K.; Schulz, A.; Gradzielski, M.; Schalley, C. A. Systems Chemistry: Logic Gates Based on the Stimuli-Responsive Gel–Sol Transition of a Crown Ether-Functionalized Bis(urea) Gelator. *Chem. Sci.* **2012**, *3*, 2073–2082.

(3) Qi, Z.; Chiappisi, L.; Gong, H.; Pan, R.; Cui, N.; Ge, Y.; Böettcher, C.; Dong, S. Ion Selectivity in Nonpolymeric Thermosensitive Systems Induced by Water-Attenuated Supramolecular Recognition. *Chem.-Eur. J.* **2018**, *24*, 3854–3861.