Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Support Information

Facile synthesis of molybdenum phosphide@carbon nanocomposite as advanced anode materials for sodium-ion batteries

Yang Cao,^{a,b} Bao Zhang,^a Xing Ou,^{a,*} Yunsha Li,^a Chunhui Wang,^a Liang Cao,^a

Chunli Peng^a and Jiafeng Zhang^a

a School of Metallurgy and Environment, Central South University, Changsha 410083, P.R. China. Email: ouxing@csu.edu.cn

b Medical Engineering Center, Xiangya Hospital, Central South University,

Changsha 410008, P.R. China.

Fig. S1. XRD patterns for final product of MoP sintered at 600 °C under air atmosphere.

Fig. S2. XPS spectrum for full patterns of MoP composite.

Fig. S3. SEM (A,B), TEM (C), and HRTEM (D of as-prepared bare MoP.

Fig. S4. CV curves for MoP@C composite with partial enlargement of Fig. 4A.

Fig. S5. CV curves of bare MoP for initial 4 cycles.

Fig. S6. Cycling performance at rate of 1000 mA g⁻¹ for MoP@C composite.

Fig. S7. TEM images of as-prepared MoP@C composite.

Fig. S8. Rate capability (A) and cycling performances at the rate of 500 mA g^{-1} (B) for MoP with C composite.

Fig. S9. *In-situ* XRD full patterns at 2θ regions of 20-70° against the discharge/charge cycle of MoP@C composite.

	Rate capability	Cycling stability	Pafaranc
Sample	Capacity/current	Capacity retention/cycles number	Keletelle
	$(mAh g^{-1}/mA g^{-1})$	$(mAh g^{-1/0}/n)$	es
MoP	173.8/1000	87.4%/250	Our work
FeP	60/500	69%/60	[S1]
CoP	200/1000	70%/25	[S2]
CoP	155/1600	77.5%/100	[S3]
Ni ₂ P	132/1000	89%/100	[S4]
Cu ₃ P	203.7/1000	79.9%/100	[S5]
Ni ₂ P	172.1/1000	31.1%/2000	[S6]
MoP	161.9/800	97.1/800	[S7]

Table S1. Comparison of electrochmical performance for MoP/C with other TMPs materials reported elsewhere as the anode materials for SIBs.

Table S2. Result of electrochemical impedance and Warburg coefficient in Fig. 5.

Samples	R _s , Ω	R_{ct}, Ω	$\sigma_w, \Omega \ s^{-1}$	D_{Na} , cm ² s ⁻¹
MoP	10.94	9.92	72.06	8.74×10 ⁻¹⁴
MoP@C	8.52	3.24	18.81	1.28×10 ⁻¹²

Reference

[S1] W.-J. Li, Q.-R. Yang, S.-L. Chou, J.-Z. Wang, H.-K. Liu, J. Power Sources, 2015, 294, 627-632.

[S2] W.J. Li, S.L. Chou, J.Z. Wang, H.K. Liu, S.X. Dou, Chem. Commun., 2015, 51, 3682-3685.

[S3] X. Ge, Z. Li, L. Yin, Nano Energy, 2017, 32, 117-124.

[S4] C. Wu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, Adv. Mater., 2017, 29, 1604015.

[S5] M. Fan, Y. Chen, Y. Xie, T. Yang, X. Shen, N. Xu, H. Yu, C. Yan, Adv. Funct. Mater., 2016, 26, 5019-5027.

[S6] X. Miao, R. Yin, X. Ge, Z. Li, L. Yin, Small, 2017, 13, 1702138.

[S7] Z. Huang, H. Hou, C. Wang, S. Li, Y. Zhang, X. Ji, Chem. Mater., 2017, 29, 7313-7322.