Supporting Information for

A portable micro glucose sensor based on copper based nanocomposite structure

Huang Chen^{a, b, §}, Guokang Fan^{a, b, §}, Jie Zhao^{c, *}, Meijia Qiu^a, Peng Sun^{a, b, *}, Yifeng Fu^f, Dongxue Han^{d, e}, Guofeng Cui ^{a, b, *}

^aKey Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China

^bGuangzhou Mecart Smart Technology Research Institute, Guangzhou, 510275, China

^cSchool of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China

^dCenter for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China

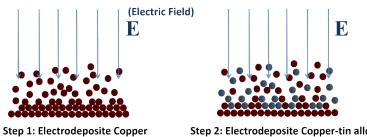
^eState Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, Jilin, PR China

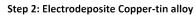
^fElectronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE - 412 96, Gothenburg, Sweden

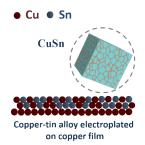
Corresponding to e-mail:cuigf@mail.sysu.edu.cn;zhaoj77@scut.edu.cn;

sunp25@mail2.sysu.edu.cn

§ These two authors contribute equally to this work


 Table S1. Composition of copper plating solution


Component	Concentration (g/l)	Manufacturer
Cu ₂ P ₂ O ₇ •3H ₂ O	65.00	Aladdin Industrial Corporation
$K_4P_2O_7$ •3 H_2O	380.00	Fuchen Chemical Reagent Co., Ltd. (Tianjin, China)
$C_6H_5O_7$ (NH ₄) 3	23.00	Aladdin Industrial Corporation
Citric acid	0.5	Guangzhou Chemical Reagent Factory


Table S2. Composition of copper tin plating solution

Component	Concentration (g/l)	Manufacturer
Cu ₂ P ₂ O ₇ •3H ₂ O	19.00	Aladdin Industrial Corporation
$\mathrm{Sn_2P_2O_7}$	15.60	Aladdin Industrial Corporation
$K_4P_2O_7$ •3 H_2O	280.00	Fuchen Chemical Reagent Co., Ltd. (Tianjin, China)
$K_2HPO_4•3H_2O$	80.00	Sinopharm Chemical Reagent Co., Ltd
H_3PO_4	3.95	Guangzhou Chemical Reagent Factory

Scheme S1. Process for modifying Cu-Sn alloy on working electrode.

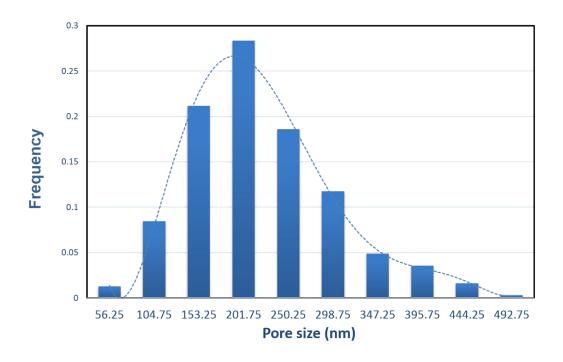
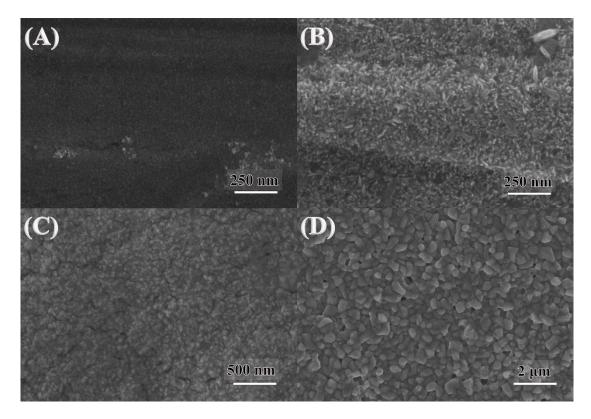
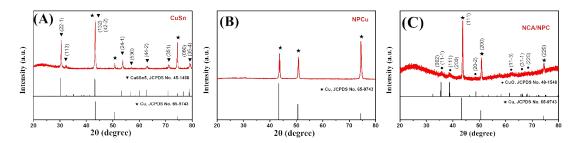
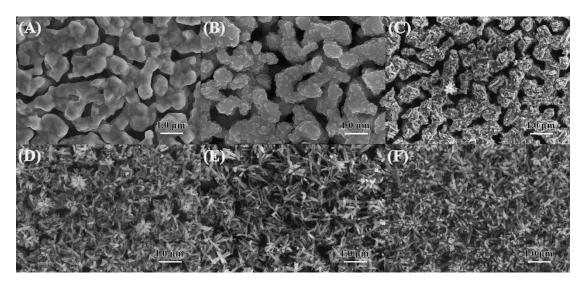
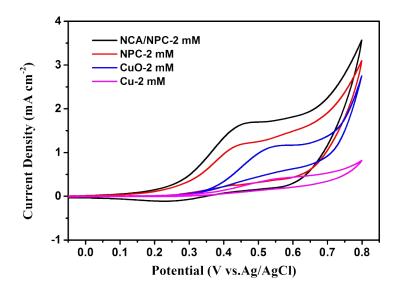
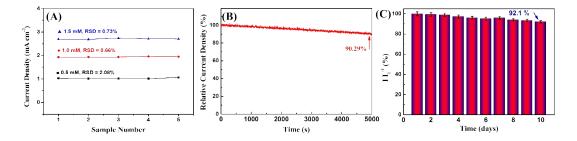



Figure S1 Pore size distributions of NPC

Figure S2. SEM images of (A) Cu substrate, (B) CuO fabricated on the substrate, (C) platinum and (D) Ag-AgCl electrode


Figure S3. XRD patterns of (A) Cu-Sn, (B)NPC and (C) NCA/NPC.

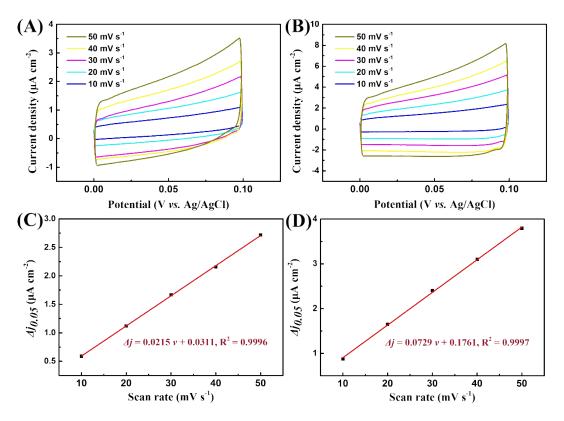

Figure S4. SEM images of NCA/NPC synthesized for (A) 0 s, (B) 120 s, (C) 240 s, (D) 360 s, (E) 480 s and (F) 600 s at 10 $^{\circ}$ C.

Figure S5. CV curves of Cu, CuO, NPC and NCA/NPC in 0.1 M KOH with 2 mM glucose at the scan rate of 50 mV s $^{-1}$.

Figure S6. (A) Relative standard deviation of the response current for 5 pieces of modified electrode towards various glucose concentration. (B) Amperometric response of the electrodes to 1 mM glucose in 0.1 M KOH at 0.60 V for 5000 s. (C)The stability of the NCA/NPC glucose sensor device over a ten-day storage period.

Figure S7. CVs for (A) Cu and (B) CuO electrode with different scan rates. The capacitive current-scan rate calibration plots of (C) Cu and (D) CuO at 0.05 V ($\Delta j_{0.05} = (j_a - j_c)/2$).