Supporting Information

Floral and lamellar europium (III)-based metal-organic framework as the high sensitivity luminescence sensor for acetone

Xiaoying Zhang^{1,2}, Xiaoli Kang¹, Wen Cui¹, Qing Zhang¹, Zhou Zheng¹,

Xudong Cui^{1*}

(1 Sichuan Research Center of New Material of Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200;
2 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074)

E-mail: <u>xudcui@163.com</u>

1. Experimental section

1.1 Materials and general methods

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. H₂BDC was purchased from Shanghai Aladdin industrial co., H₃BTC was purchased from J&K Scientific Ltd., Eu(NO₃)₃·6H₂O was purchased from Adamas Reagent Co., Ltd. X-ray powder diffraction (XRD) patterns of Eu-BDC, Eu-BTC and the relative immersed compounds were recorded on a Haoyuan DX-2700 X-ray Diffractometer (Japan) using Cu-Ka ($\lambda = 1.5405$ A, 40 KV, 30 mA) radiation from 5 to 50°. Thermogravimetric analysis (TGA) was carried out at a ramp rate of 10 °C min⁻¹ in a nitrogen flow using a Mettler-Toledo TGA/Q500 instrument. The solution fluorescence spectra were measured on a Hitachi F-4600. Both excitation and emission slit widths were 1 nm. The emulsion was prepared by introducing 1 mg of Eu-MOFs powder into 3.00 mL of methanol, aged 24 h after ultrasound, then for follow-up detection. The intensity of Eu-BDC was recorded at 615 nm, and excitation was performed at 323 nm. The intensity of Eu-BTC was recorded at 619 nm, and excited by 301 nm. The UV-vis diffuse reflection was performed on a Lambda 750 spectrophotometer. The cyclic voltammetry measurement was performed on a CHI660 by giving an applied voltage to the platinum working electrode, a Pt-wire counter electrode, and an Ag/AgCl reference electrode in a three-electrode system at room temperature, using 0.1 M [Bu₄N]PF₆ solution as the supporting electrolyte. N₂ adsorption isotherms after desorption with 473 K for 24 h were taken with a Micrometrics ASAP 2020 HD88 instrument at 77 K. **1.2 Synthesis of the Eu-BDC Eu-BTC complex**

Eu-BDC was synthesized through the solvothermal reaction of NaOH (57.66 mg), H_2BDC (120.96 mg) and $Eu(NO_3)_3 \cdot 6H_2O$ (218.74 mg) solved in a mixture of H_2O /methanol (17:3, 15 mL) in a screw capped vial. The resulting mixture was placed in an oven at 150 °C for 3 days. White powder were obtained after 3 times centrifugation washed with H_2O and then under vacuum at 100 °C for 24 h.

Eu-BTC was synthesized through the solvothermal reaction of NaOH (49.92 mg), H₃BTC (132.47 mg) and Eu(NO₃)₃·6H₂O (189.38 mg) solved in a mixture of H₂O/methanol (17:3, 15 mL) in a screw capped vial. The resulting mixture was placed in an oven at 150 °C for 3 days. White powder were obtained after 3 times centrifugation washed with H₂O and then under vacuum at 100 °C for 24 h.

2. Figure S1 (a) TGA traces of Eu-BDC ranging from room temperature to 1000 °C.

(b) TGA traces of Eu-BTC ranging from room temperature to 1000 °C.

Sample	Selectivity	Sensitivity	Reference
		(EC50 Vol%)	
Eu-BTC	Methanol, DCM, ethanol, ACN, DMF, DMA, Water, acetone	0.06%	This work
Eu-BDC	Methanol, DMF, Water, DCM, ACN, DMA, ethanol, acetone	0.065%	This work
Eu-BPDA	Methanol, ethanol, ACN, THF, DMF, DCM, Water, acetone	0.028%/0.35%	[3]
	Ethanol, CHCl ₃ , C ₂ H ₄ Cl, DMF, CH ₃ CN, CH ₂ Cl ₂ , THF, ether, butyl alcohol,		
SiO ₂ @Eu-DPA	amyl	0.25%	[42]
	alcohol, ethylene glycol, methanol, acetone		
Eu-L	DMF, methanol, ethanol, chloroform, CH ₃ CN, 2-propanol, THF, acetone	<<0.5%	[41]
Eu-BPDC-OX	Ethanol, methanol, 1,4-dioxane, DMF, diethylene glycol, ethylene glycol, ether,	0.467%	[44]
	trichloromethane, ACN, DMA, n-hexane, DEF, acetone		
Tb-PA	H2O, DMF, DMSO, benzene, 0-xylene, propanol, THF, CHCl3, acetone	7%	[35]
Tb-L	Ethanol, 1,4-dioxane, CHCl ₃ , THF, 1-pentanol, DMF, 1-hexanol, isopropanol,	10%	[43]
	methanol, ethylene glycol, ethyl acetate, ACN, CH ₂ Cl ₂ , acetone		

3. Table S1 A comparison between the acetone sensing performance of Ln-MOFs materials and our work

4. Figure S2 The Stern-Völmer plot of I/I_0 versus the concentration of acetone

5. LUMO and HOMO of acetone calculated by DFT and Eu-BDC, Eu-BTC gained by solid UV-vis diffuse reflection and cyclic voltammetry

5.1 LUMO and HOMO of acetone

Gaussian 09: # opt freq b3lyp/6-311++g(3df,3pd) scrf=(solvent=methanol) geom=connectivity LUMO = -0.03001 Hratree = -0.82 eV HOMO = -0.26535 Hratree = -7.22 eV Eg = LUMO – HOMO = -0.82 - (-7.22) = 6.40 eV

5.1 LUMO, HOMO of Eu-BDC and Eu-BTC

A conventional three-electrode configuration consisting of a platinum working electrode, a Pt-wire counter electrode, and an Ag/AgCl reference electrode were used. The solvent in all measurements was CH_2Cl_2 , and the supporting electrolyte was 0.1 M [Bu₄N]PF₆. Ferrocene was added as a calibrant after each set of measurements, and all potentials reported were quoted with reference to the ferrocene-ferrocenium couple at a scan rate of 100 mV/s.

Figure S3 (a) Cyclic voltammetry of ferrocene

The LUMO levels of Eu-BPDA, Eu-BDC, Eu-BTC were measured from cyclic voltammetry using ferrocene substance. E_{re} and E_{ox} are redox potential of materials and oxidation potential of ferrocene, respectively. according to the following equations.

LUMO = - $(E_{re} + 4.8 - E_{ox})$ HOMO = LUMO - Eg $E_{ox} = (0.42+0.56)/2 = 0.49 \text{ eV}$

(b) Solid UV-vis of Eu-BDC, Eu-BTC

 $Eg = hv = hc/\lambda_{onset}$ 其中, h为普朗克常量, h = 6.626×10⁻³⁴ J·s = 4.136×10⁻¹⁵ eV·s; c为光速, c = 2.998×10⁸ m·s⁻¹ = 2.998×10¹⁷ nm·s⁻¹, 代入式中得, Eg = 1240/ λ_{onset} $Eg_{Eu-BDC} = 1240/389 = 3.19 eV$ $Eg_{Eu-BTC} = 1240/335 = 3.70 eV$

(c) Cyclic voltammetry of Eu-BDC

LUMO = - (-0.74 + 4.8 - 0.49) = -3.57 eV

$$HOMO = LUMO - Eg = -3.57 - 3.19 = -6.76 eV$$

(d) Cyclic voltammetry of Eu-BTC

LUMO = - (-0.71 + 4.8 - 0.49) = -3.60 eV HOMO = LUMO - Eg = -3.60 - 3.70 = -7.3 eV