This journal is © The Royal Society of Chemistry and the Centre Natio Supporting Information

Floral and lamellar europium (III)-based metal-organic framework as the high sensitivity luminescence sensor for acetone

Xiaoying Zhang ${ }^{1,2}$, Xiaoli Kang ${ }^{1}$, Wen Cui ${ }^{1}$, Qing Zhang ${ }^{1}$, Zhou Zheng ${ }^{1}$, Xudong Cui ${ }^{1 *}$
(1 Sichuan Research Center of New Material of Institute of Chemical
Materials, China Academy of Engineering Physics, Chengdu 610200;
2 School of Materials Science and Engineering, Chongqing Jiaotong
University, Chongqing 400074)
E-mail: xudcui@163.com

1. Experimental section

1.1 Materials and general methods

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. $\mathrm{H}_{2} \mathrm{BDC}$ was purchased from Shanghai Aladdin industrial co., $\mathrm{H}_{3} \mathrm{BTC}$ was purchased from J\&K Scientific Ltd., $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was purchased from Adamas Reagent Co., Ltd. X-ray powder diffraction (XRD) patterns of Eu-BDC, Eu-BTC and the relative immersed compounds were recorded on a Haoyuan DX-2700 X-ray Diffractometer (Japan) using Cu-Ka ($\lambda=1.5405$ A, 40 KV , 30 mA) radiation from 5 to 50°. Thermogravimetric analysis (TGA) was carried out at a ramp rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ in a nitrogen flow using a Mettler-Toledo TGA/Q500 instrument. The solution fluorescence spectra were measured on a Hitachi F-4600. Both excitation and emission slit widths were 1 nm . The emulsion was prepared by introducing 1 mg of Eu-MOFs powder into 3.00 mL of methanol, aged 24 h after ultrasound, then for follow-up detection. The intensity of Eu-BDC was recorded at 615 nm , and excitation was performed at 323 nm . The intensity of Eu-BTC was recorded at 619 nm , and excited by 301 nm . The UV-vis diffuse reflection was performed on a Lambda 750 spectrophotometer. The cyclic voltammetry measurement was performed on a CHI660 by giving an applied voltage to the platinum working electrode, a Pt-wire counter electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode in a three-electrode system at room temperature, using $0.1 \mathrm{M}\left[\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{PF}_{6}$ solution as the supporting electrolyte. N_{2} adsorption isotherms after desorption with 473 K for 24 h were taken with a Micrometrics ASAP 2020 HD88 instrument at 77 K .

1.2 Synthesis of the Eu-BDC Eu-BTC complex

Eu-BDC was synthesized through the solvothermal reaction of NaOH (57.66 mg), $\mathrm{H}_{2} \mathrm{BDC}(120.96 \mathrm{mg})$ and $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(218.74 \mathrm{mg})$ solved in a mixture of $\mathrm{H}_{2} \mathrm{O} /$ methanol $(17: 3,15 \mathrm{~mL})$ in a screw capped vial. The resulting mixture was placed in an oven at $150{ }^{\circ} \mathrm{C}$ for 3 days. White powder were obtained after 3 times centrifugation washed with $\mathrm{H}_{2} \mathrm{O}$ and then under vacuum at $100{ }^{\circ} \mathrm{C}$ for 24 h .

Eu-BTC was synthesized through the solvothermal reaction of $\mathrm{NaOH}(49.92 \mathrm{mg})$, $\mathrm{H}_{3} \mathrm{BTC}(132.47 \mathrm{mg})$ and $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(189.38 \mathrm{mg})$ solved in a mixture of $\mathrm{H}_{2} \mathrm{O} /$ methanol ($17: 3,15 \mathrm{~mL}$) in a screw capped vial. The resulting mixture was placed in an oven at $150{ }^{\circ} \mathrm{C}$ for 3 days. White powder were obtained after 3 times centrifugation washed with $\mathrm{H}_{2} \mathrm{O}$ and then under vacuum at $100{ }^{\circ} \mathrm{C}$ for 24 h .
2. Figure $\mathbf{S 1}$ (a) TGA traces of Eu-BDC ranging from room temperature to $1000^{\circ} \mathrm{C}$.

(b) TGA traces of Eu-BTC ranging from room temperature to $1000{ }^{\circ} \mathrm{C}$.

3. Table S1 A comparison between the acetone sensing performance of Ln-MOFs materials and our work

Sample	Selectivity	Sensitivity $\left(\mathrm{EC}_{50} \mathrm{Vol} \%\right)$	Reference
Eu-BTC	Methanol, DCM, ethanol, ACN, DMF, DMA, Water, acetone	0.06\%	This work
Eu-BDC	Methanol, DMF, Water, DCM, ACN, DMA, ethanol, acetone	0.065\%	This work
Eu-BPDA	Methanol, ethanol, ACN, THF, DMF, DCM, Water, acetone	0.028\%/0.35\%	[3]
$\mathrm{SiO}_{2} @ \mathrm{Eu}-\mathrm{DPA}$	Ethanol, $\mathrm{CHCl}_{3}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}, \mathrm{DMF}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, ether, butyl alcohol, amyl alcohol, ethylene glycol, methanol, acetone	0.25\%	[42]
Eu-L	DMF, methanol, ethanol, chloroform, $\mathrm{CH}_{3} \mathrm{CN}, 2$-propanol, THF, acetone	$\ll 0.5 \%$	[41]
Eu-BPDC-OX	Ethanol, methanol, 1,4-dioxane, DMF, diethylene glycol, ethylene glycol, ether, trichloromethane, ACN, DMA, n-hexane, DEF, acetone	0.467\%	[44]
Tb-PA	$\mathrm{H}_{2} \mathrm{O}$, DMF, DMSO, benzene, 0-xylene, propanol, THF, CHCl_{3}, acetone	7\%	[35]
Tb-L	Ethanol, 1,4-dioxane, CHCl_{3}, THF, 1-pentanol, DMF, 1-hexanol, isopropanol, methanol, ethylene glycol, ethyl acetate, $\mathrm{ACN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetone	10\%	[43]

4. Figure $\mathbf{S 2}$ The Stern-Völmer plot of $\mathrm{I} / \mathrm{I}_{0}$ versus the concentration of acetone

5. LUMO and HOMO of acetone calculated by DFT and Eu-BDC, Eu-BTC gained by solid UV-vis diffuse reflection and cyclic voltammetry

5.1 LUMO and HOMO of acetone

Gaussian 09:
\# opt freq b3lyp/6-311++g(3df,3pd) scrf=(solvent=methanol) geom=connectivity
LUMO $=-0.03001$ Hratree $=-0.82 \mathrm{eV}$
HOMO $=-0.26535$ Hratree $=-7.22 \mathrm{eV}$
$\mathrm{Eg}=\mathrm{LUMO}-\mathrm{HOMO}=-0.82-(-7.22)=6.40 \mathrm{eV}$

5.1 LUMO, HOMO of Eu-BDC and Eu-BTC

A conventional three-electrode configuration consisting of a platinum working electrode, a Pt-wire counter electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode were used. The solvent in all measurements was $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the supporting electrolyte was 0.1 $\mathrm{M}\left[\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{PF}_{6}$. Ferrocene was added as a calibrant after each set of measurements, and all potentials reported were quoted with reference to the ferrocene-ferrocenium couple at a scan rate of $100 \mathrm{mV} / \mathrm{s}$.

Figure S3 (a) Cyclic voltammetry of ferrocene

The LUMO levels of Eu-BPDA, Eu-BDC, Eu-BTC were measured from cyclic voltammetry using ferrocene substance. E_{re} and E_{ox} are redox potential of materials and oxidation potential of ferrocene, respectively. according to the following equations.

$$
\begin{gathered}
\mathrm{LUMO}=-\left(\mathrm{E}_{\mathrm{re}}+4.8-\mathrm{E}_{\mathrm{ox}}\right) \\
\mathrm{HOMO}=\mathrm{LUMO}-\mathrm{Eg} \\
\mathrm{E}_{\mathrm{ox}}=(0.42+0.56) / 2=0.49 \mathrm{eV}
\end{gathered}
$$

(b) Solid UV-vis of Eu-BDC, Eu-BTC

$$
\mathrm{Eg}=\mathrm{h} \nu=\mathrm{hc} / \lambda_{\text {onset }}
$$

其中， h 为普朗克常量， $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.136 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s} ; \mathrm{c}$ 为光速， $\mathrm{c}=$ $2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}=2.998 \times 10^{17} \mathrm{~nm} \cdot \mathrm{~s}^{-1}$ ，代入式中得， $\mathrm{Eg}=1240 / \lambda_{\text {onset }}$

$$
\begin{gathered}
\mathrm{Eg}_{\text {Eu-BDC }}=1240 / 389=3.19 \mathrm{eV} \\
\mathrm{Eg}_{\mathrm{Eu}-\mathrm{BTC}}=1240 / 335=3.70 \mathrm{eV}
\end{gathered}
$$

（c）Cyclic voltammetry of Eu－BDC

$$
\mathrm{HOMO}=\text { LUMO }-\mathrm{Eg}=-3.57-3.19=-6.76 \mathrm{eV}
$$

(d) Cyclic voltammetry of Eu-BTC

