Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

A hydrazono-quinoline-based chemosensor sensing In³⁺ and Zn²⁺ via fluorescence turnon and ClO⁻ via color change in aqueous solution

Ahran Kim, Cheal Kim*

Department of Fine Chemistry, Seoul National Univ. of Science & Technology (SNUT), Seoul, 01811, South Korea. Fax: +82-2-972-9149; Tel: +82-2-972-6681; E-mail: <u>chealkim@seoultech.ac.kr</u>

No.	Sensor	Detection limit (µM)	Percent of water in solution (%)	Method of detection	Reference
1		No data	0	Fluorescence turn-on	1
2	N N CO ₂ CH ₂ CH ₃	0.19	0	Fluorescence turn-off	2
3		No data	0	Ratiometric fluorescence change	3
4		2.0	0	Fluorescence turn-on	4
5	NO2 NO2	10.0	50	Fluorescence turn-on Color change	5
6	O NH NH NH	No data	1	Fluorescence turn-on	6

 Table S1. Indium chemosensors reported to date.

Reference

- S. K. Kim, S. H. Kim, H. J. Kim, S. H. Lee, S. W. Lee, J. Ko, R. A. Bartsch and J. S. Kim, *Inorg. Chem.*, 2005, 44, 7866-7875.
- 2 Y.-C. Wu, H.-J. Li and H.-Z. Yang, Org. Biomol. Chem., 2010, 8, 3394–3397.
- 3 D. Y. Han, J. M. Kim, J. Kim, H. S. Jung, Y. H. Lee, J. F. Zhang and J. S. Kim, *Tetrahedron Lett.*, 2010, **51**, 1947–1951.
- H. Kim, K. B. Kim, E. J. Song, I. H. Hwang, J. Y. Noh, P. G. Kim, K. D. Jeong and C. Kim, *Inorg. Chem. Commun.*, 2013, 36, 72–76.
- 5 Y.-M. Kho and E. Shin, *Molecules*, 2017, **22**, 1569.
- 6 A. Kim, J. H. Kang, H. J. Jang and C. Kim, J. Ind. Eng. Chem., 2018, 65, 290-299.
- M. Lo Presti, S. El Sayed, R. Martínez-Máñez, A. M. Costero, S. Gil, M. Parra and F. Sancenón, *New J. Chem.*, 2016, 40, 9042–9045.
- 8 K. Ostrowska, A. Kaźmierska, M. Rąpała-Kozik and J. Kalinowska-Tłuścik, *New J. Chem.*, 2014, **38**, 213–226.
- 9 S. Y. Lee, M. Yang and C. Kim, *Spectrochim. Acta A*, 2018, **205**, 622–629.
- P. K. Mehta, G. W. Hwang, J. Park and K.-H. Lee, *Anal. Chem.*, 2018, 90, 11256– 11264.
- H. J. Jang, J. H. Kang, D. Yun and C. Kim, *Photochem. Photobiol. Sci.*, 2018, 17, 1247–1255.
- 12 C. Kim and J. B. Chae, J. Fluoresc, 2018, 28, 1363–1370.

Fig. S1 Change of UV-vis spectra of HQD (30 μ M) with different indium concentration.

Fig. S2 Job plot of **HQD** with In^{3+} . Absorbance at 450 nm was plotted as a function of the molar ratio of [**HQD**]/([**HQD**]+[In³⁺]). The total concentration of In^{3+} with sensor **HQD** was 30 μ M. [A is the absorbance of **HQD**-In³⁺ and A₀ is the absorbance of **HQD**].

Fig. S3 Positive-ion electrospray ionization (ESI) mass spectrum and pattern of sensor HQD (100 μ M) upon addition of indium ion (50 μ M).

Fig. S4 Li's equation plot of HQD (30 μ M) for In³⁺.

Fig. S5 Fluorescence intensity (525nm) of HQD and In³⁺-2· HQD in different pH.

Fig. S6 ¹H NMR titration of HQD with In(NO₃)₃.

Fig. S7 Competitive selectivity of HQD (30 μ M) toward In³⁺ ions (0.5 equiv) in the presence of other metal ions (0.5 equiv).

Fig. S8 Change of fluorescence spectra of HQD (30 μ M) with different Zn²⁺ concentration.

Fig. S9 Job plot of **HQD** with Zn^{2+} . Absorbance at 440 nm was plotted as a function of the molar ratio of [**HQD**]/([**HQD**]+[Zn²⁺]). The total concentration of Zn²⁺ ions with sensor **HQD** was 30 μ M. [A is the absorbance of **HQD**-Zn²⁺ and A₀ is the absorbance of **HQD**].

Fig. S10 Positive-ion electrospray ionization (ESI) mass spectrum of HQD (100 μ M) upon addition of zinc ion (1 equiv).

Fig. S11 Benesi-Hildebrand equation plot of HQD (30 μ M) for Zn²⁺.

Fig. S12 L.O.D. for Zn^{2+} by HQD (30 μ M) based on the 3σ /slope.

Fig. S13 Competitive selectivity of HQD (30 μ M) toward Zn²⁺ ions (1 equiv) in the presence of other metal ions (1 equiv).

Fig. S14 L.O.D. for ClO⁻ by HQD (20 μ M) based on the 3 σ /slope.

Fig. S15 Absorbance (430 nm) of HQD and HQD with ClO⁻ in different pH.

Fig. S16 Abosrbance (430 nm) of HQD (20 μ M) toward ClO⁻ (20 equiv) in the presence of other anions and ROS (20 equiv).

Fig. S17 ¹H NMR titration of HQD with NaClO.

Fig. S18 Positive-ion electrospray ionization (ESI) mass spectrum and pattern of sensor **HQD** (100 μM) upon addition of NaClO (1 equiv).

(a)

Fig. S19 (a) The theoretical excitation energies and the experimental UV-vis spectrum of HQD. (b) The major electronic transition energies and molecular orbital contributions of HQD (H = HOMO and L = LUMO).

(a)

Fig. S20 (a) The theoretical excitation energies and the experimental UV-vis spectrum of $In^{3+}-2 \cdot HQD$. (b) The major electronic transition energies and molecular orbital contributions of $In^{3+}-2 \cdot HQD$ (H = HOMO and L = LUMO).

Fig. S21 The major molecular orbital transitions and excitation energies of **HQD** and its In³⁺ complex.

Fig. S22 (a) The theoretical excitation energies and the experimental UV-vis spectrum of $HQD-Zn^{2+}$ complex. (b) The major electronic transition energies and molecular orbital contributions of $HQD-Zn^{2+}$ complex (H = HOMO and L = LUMO).

Fig. S23 The major molecular orbital transitions and excitation energies of HQD and its Zn^{2+} complex.

Fig. S24 (a) The theoretical excitation energies and the experimental UV-vis spectrum of DCA. (b) The major electronic transition energies and molecular orbital contributions of DCA (H = HOMO and L = LUMO).

Fig. S25 The major molecular orbital transitions and excitation energies of HQD and DCA.