Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information for

Zirconium–MOF catalysed selective synthesis of αhydroxyamide via transfer hydrogenation of α-ketoamide

Ashish A. Mishra⁺ and Bhalchandra M. Bhanage⁺*

[†]Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai-400019. India.

Tel: +91 22 33612601; Fax: +91 22 33611020.

E-mail: bm.bhanage@gmail.com ; bm.bhanage@ictmumbai.edu.in

No.	Characterization Analysed	Page No.
1.	Powder XRD of Catalyst	S2
2.	TGA-DTGA of Catalyst	\$3
3.	FT-IR of Catalyst & Catalytic Recycle Study	S4
4.	¹ H & ¹³ C NMR of α-hydroxyl amide and its derivative	S5 - S20

INDEX

X-RAY DIFFRACTION OF UiO66 & UiO66-NH₂

Figure 3: XRD pattern for UiO-66 fresh and 4th recyclable catalyst

Figure 4: Thermogravimetric analysis of UiO66 and UiO66-NH₂

Figure 5: Thermogravimetric analysis and DTA of UiO66-NH₂

Figure 7: Catalytic Cycle

126 MHz ¹³C-NMR spectra of 2a in DMSO-d₆

126 MHz $^{\rm 13}\text{C-NMR}$ spectra of 2b in DMSO-d_6

126 MHz $^{\rm 13}\text{C-NMR}$ spectra of 2c in DMSO-d_6

126 MHz $^{\rm 13}\text{C-NMR}$ spectra of 2d in DMSO-d_6

126 MHz ¹³C-NMR spectra of 2e in DMSO-d₆

126 MHz $^{\rm 13}\text{C}\text{-}\text{NMR}$ spectra of 2f in DMSO-d_6

126 MHz $^{\rm 13}\text{C-NMR}$ spectra of 2g in DMSO-d_6

126 MHz $^{\rm 13}\text{C-NMR}$ spectra of 2h in DMSO-d_6

126 MHz $^{\rm 13}\text{C-NMR}$ spectra of 2i in DMSO-d_6

126 MHz ¹³C-NMR spectra of 2j in DMSO-d₆

126 MHz $^{\rm 13}\text{C-NMR}$ spectra of 2k in DMSO-d_6

126 MHz $^{\rm 13}\text{C-NMR}$ spectra of 2I in DMSO-d_6

126 MHz $^{\rm 13}\text{C-NMR}$ spectra of 2m in DMSO-d_6

126 MHz ¹³C-NMR spectra of 2n in DMSO-d₆

126 MHz ¹³C-NMR spectra of 20 in DMSO-d₆

126 MHz $^{\rm 13}\text{C-NMR}$ spectra of 2p in DMSO-d_6