Electronic Supplementary Information

Table of contents

Figure/Table	Content	Page number
Figure S1	FT-IR spectrum of complex 1	4
Figure S2	FT-IR spectrum of complex 2	4
Figure S3	FT-IR spectrum of complex 3	5
Figure S4	FT-IR spectrum of complex 4	5
Figure S5	¹ H NMR spectrum of complex 1 recorded in CDCl ₃	6
Figure S6	¹³ C{ ¹ H} NMR spectrum of complex 1 recorded in CDCl ₃	6
Figure S7	¹¹⁹ Sn NMR spectrum of complex 1 recorded in CDCl ₃	7
Figure S8	¹ H NMR spectrum of complex 2 recorded in CDCl ₃	7
Figure S9	¹³ C{ ¹ H} NMR spectrum of complex 2 recorded in CDCl ₃	8
Figure S10	¹¹⁹ Sn NMR spectrum of complex 2 recorded in CDCl ₃	8
Figure S11	¹ H NMR spectrum of complex 3 recorded in CDCl ₃	9
Figure S12	¹³ C{ ¹ H} NMR spectrum of complex 3 recorded in CDCl ₃	9
Figure S13	¹¹⁹ Sn NMR spectrum of complex 3 recorded in CDCl ₃	10
Figure S14	¹ H NMR spectrum of complex 4 recorded in CDCl ₃	10
Figure S15	¹³ C{ ¹ H} NMR spectrum of complex 4 recorded in CDCl ₃	11
Figure S16	¹¹⁹ Sn NMR spectrum of complex 4 recorded in CDCl ₃	11
Figure S17	Naked-eye colour changes observed due to the addition of	12
	equivalent amounts of metal salts in complex 2	
Figure S18	Naked-eye colour changes observed due to the addition of	12
	equivalent amounts of metal salts in complex 3	
Figure S19	Naked-eye colour changes observed due to the addition of	12
	equivalent amounts of metal salts in complex 4	
Figure S20	Absorption spectral variation of complex 1 (2x 10 ⁻⁵ mol	13
	dm ⁻³) with the addition of 1-5 equivalent of nitrate salts (2x	
	$10^{-4} \text{ mol dm}^{-3}$) of (a) Ag ⁺ (b) Ba ²⁺ (c) Cd ²⁺ (d) Co ²⁺ in	
	DCM-methanol (1:9).	
Figure S21	Absorption spectral variation of complex 1 (2x 10 ⁻⁵ mol	14
	dm ⁻³) with the addition of 1-5 equivalent of nitrate salts (2x	
	$10^{-4} \text{ mol dm}^{-3}$) of (e) Cr^{3+} (f) Mn^{2+} (g) Ni^{2+} (h) Zn^{2+} in	
	DCM-methanol (1:9).	
Figure S22	Absorption spectral variation of complex 2 (2x 10 ⁻⁵ mol	15
	dm ⁻³) with the addition of 1-5 equivalent of nitrate salts (2x	
	$10^{-4} \text{ mol dm}^{-3}$) of (a) Ag ⁺ (b) Ba ²⁺ (c) Cd ²⁺ (d) Co ²⁺ in	
	DCM-methanol (1:9).	
E: 922	Alexander and 1 - 2 (2 10-5 1	1.0
Figure S23	Absorption spectral variation of complex 2 (2x 10 ⁻⁵ mol	16
	dm ⁻³) with the addition of 1-5 equivalent of nitrate salts (2x 10^{-4} med 10^{-3}) of (a) Cr^{3+} (b) Mr^{2+} (c) Ni^{2+} (b) Tr^{2+} in	
	10 ⁻⁴ mol dm ⁻³) of (e) Cr ³⁺ (f) Mn ²⁺ (g) Ni ²⁺ (h) Zn ²⁺ in	
	DCM-methanol (1:9)	

Figure S24	Absorption spectral variation of complex 3 (2x 10 ⁻⁵ mol dm ⁻³) with the addition of 1-5 equivalent of nitrate salts (2x 10 ⁻⁴ mol dm ⁻³) of (a) Ag ⁺ (b) Ba ²⁺ (c) Cd ²⁺ (d) Co ²⁺ in DCM-methanol (1:9)	17
Figure S25	Absorption spectral variation of complex 3 (2x 10 ⁻⁵ mol dm ⁻³) with the addition of 1-5 equivalent of nitrate salts (2x 10 ⁻⁴ mol dm ⁻³) of (e) Cr ³⁺ (f) Mn ²⁺ (g) Ni ²⁺ (h) Zn ²⁺ in DCM-methanol (1:9)	18
Figure S26	Absorption spectral variation of complex 4 (2x 10 ⁻⁵ mol dm ⁻³) with the addition of 1-5 equivalent of nitrate salts (2x 10 ⁻⁴ mol dm ⁻³) of (a) Ag ⁺ (b) Ba ²⁺ (c) Cd ²⁺ (d) Co ²⁺ in DCM-methanol (1:9)	19
Figure S27	Absorption spectral variation of complex 4 (2x 10 ⁻⁵ mol dm ⁻³) with the addition of 1-5 equivalent of nitrate salts (2x 10 ⁻⁴ mol dm ⁻³) of (e) Cr ³⁺ (f) Mn ²⁺ (g) Ni ²⁺ (h) Zn ²⁺ in DCM-methanol (1:9)	20
Figure S28	Absorption spectral variation of complex 2 and 4 (2x 10 ⁻⁵ mol dm ⁻³) with the addition of 1-5 equivalent of ferric nitrate nonahydrate(2 x 10 ⁻⁴ mol dm ⁻³) in DCM-methanol (1:9)	21
Figure S29	(a) Absorption spectral variation of complex 2 (2x 10 ⁻⁵ mol dm ⁻³) with the addition of 1-5 equivalent of copper(II) nitrate trihydrate (2 x 10 ⁻⁴ mol dm ⁻³) in DCM-methanol (1:9). (b) The stoichiometric plot of complex 2 with copper(II) nitrate trihydrate. (c) Job's plot of Complex 2 with copper(II) nitrate trihydrate. (d) Benesi-Hildebrand plot Complex 2 with the addition of copper(II) nitrate trihydrate	22
Figure S30	(a) Absorption spectral variation of complex 3 (2x 10 ⁻⁵ mol dm ⁻³) with the addition of 1-5 equivalent of copper(II) nitrate trihydrate (2x 10 ⁻⁴ mol dm ⁻³) in DCM-methanol (1:9). (b) The stoichiometric plot of complex 3 with copper(II) nitrate trihydrate. (c) Job's plot of Complex 3 with copper(II) nitrate trihydrate. (d) Benesi-Hildebrand plot Complex 3 with the addition of copper(II) nitrate trihydrate	23
Figure S31	(a) Absorption spectral variation of complex 3 (2x 10 ⁻⁵ mol dm ⁻³) with the addition of 1-5 equivalent of ferric nitrate nonahydrate (2x 10 ⁻⁴ mol dm ⁻³) in DCM-methanol (1:9). (b) The stoichiometric plot of Complex 3 with ferric nitrate nonahydrate. (c) Job's plot of Complex 3 with ferric nitrate nonahydrate. (d) Benesi-Hildebrand plot Complex 3 with the addition of ferric nitrate nonahydrate.	24

Figure S32	(a) Absorption spectral variation of complex 4 (2x 10 ⁻⁵ mol dm ⁻³) with the addition of 1-5 equivalent of copper nitrate trihydrate (2x 10 ⁻⁴ mol dm ⁻³) in DCM-methanol (1:9). (b) The stoichiometric plot of Complex 4 with copper(II) nitrate trihydrate. (c) Job's plot of Complex 4 with copper(II) nitrate trihydrate. (d) Benesi-Hildebrand plot Complex 4 with the addition of copper(II) nitrate trihydrate.	25
Figure S33	Changes in partial ¹ H NMR spectra of complex 1 with the addition of an equivalent amount of selected metal ions in DMSO-d-6.	26-27
Figure S34	Graph between absorbance and concentration of guest for calculation of slope for (a) Cu ²⁺ (b) Fe ³⁺ for complex 1	28
Figure S35	Graph between absorbance and concentration of guest for calculation of slope for (a) Cu ²⁺ (b) Fe ³⁺ for complex 3	28
Figure S36	Graph between absorbance and concentration of guest for calculation of slope for (a) Cu ²⁺ for complex 2 (b) Cu ²⁺ for complex 4	29

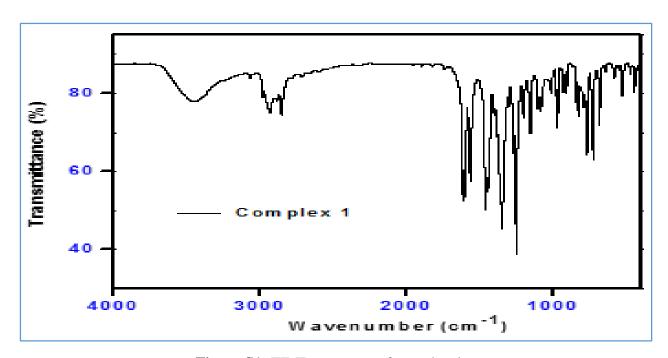


Figure S1: FT-IR spectrum of complex 1.

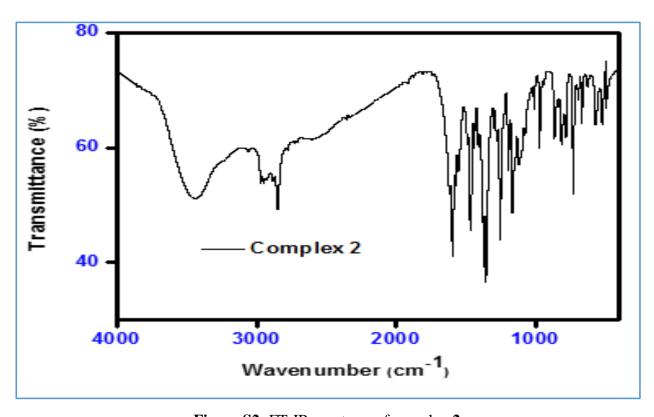
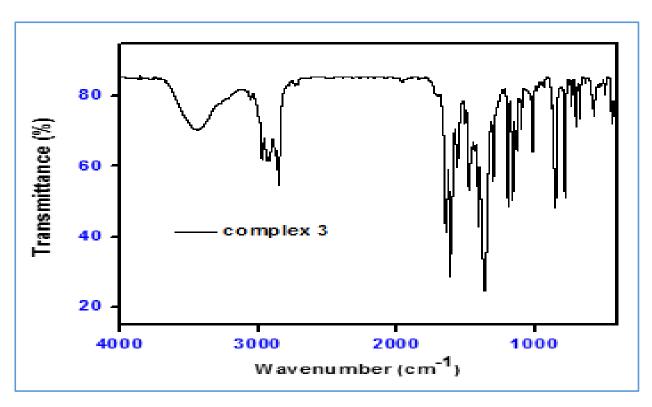
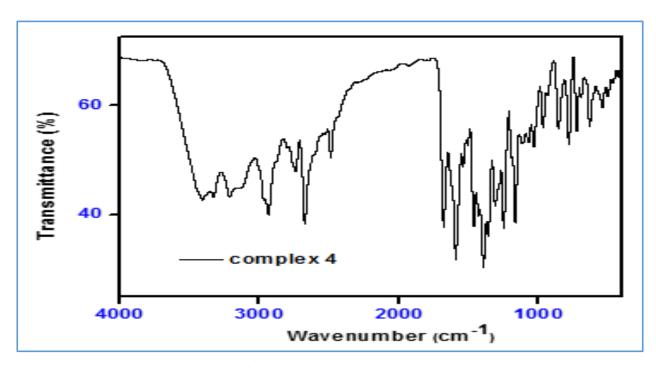




Figure S2: FT-IR spectrum of complex 2

Figure S3: FT-IR spectrum of complex **3**.

Figure S4: FT-IR spectrum of complex **4**.

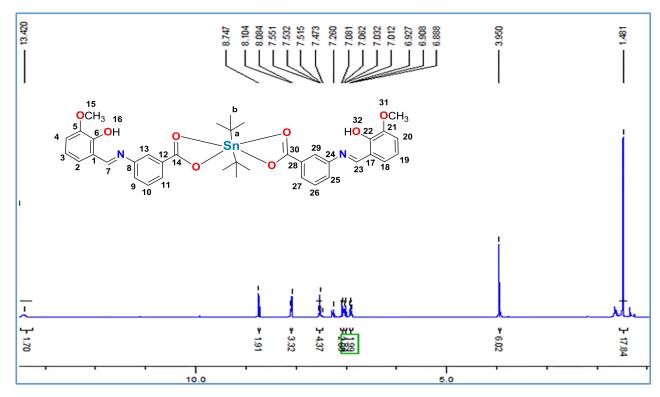


Figure S5: ¹H NMR spectrum of complex 1 recorded in CDCl₃.

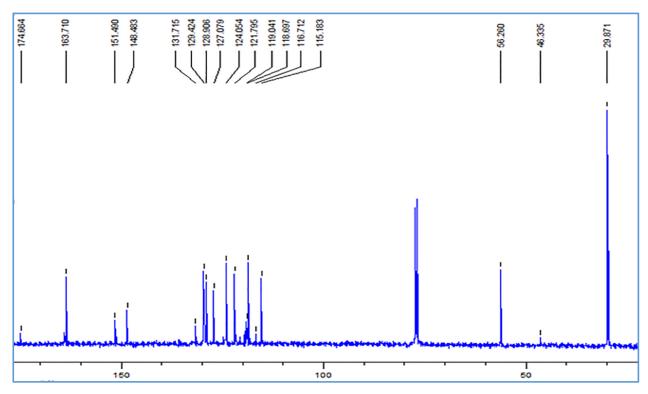


Figure S6: ¹³C{¹H} NMR spectrum of complex 1 recorded in CDCl₃.

Figure S7: ¹¹⁹Sn NMR spectrum of complex 1 recorded in CDCl₃

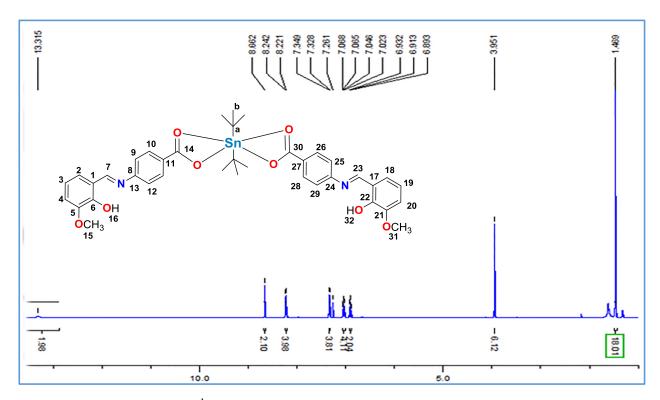


Figure S8: ¹H NMR spectrum of complex 2 recorded in CDCl₃.

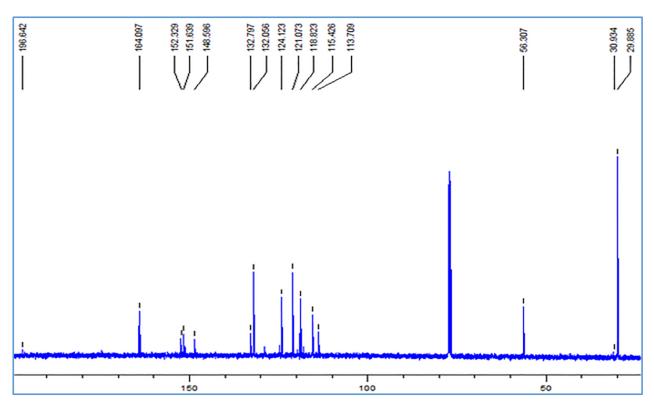


Figure S9: ¹³C{¹H} NMR spectrum of complex 2 recorded in CDCl₃.

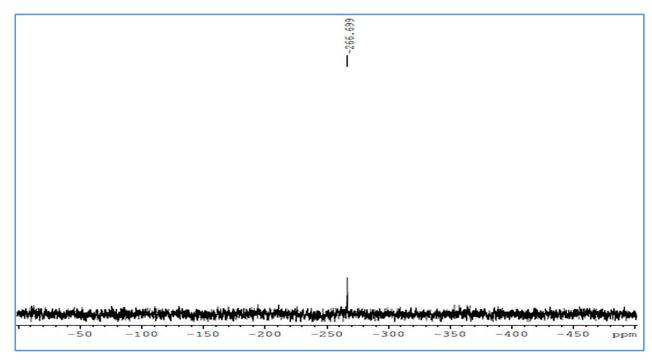


Figure S10: ¹¹⁹Sn NMR spectrum of complex 2 recorded in CDCl₃.

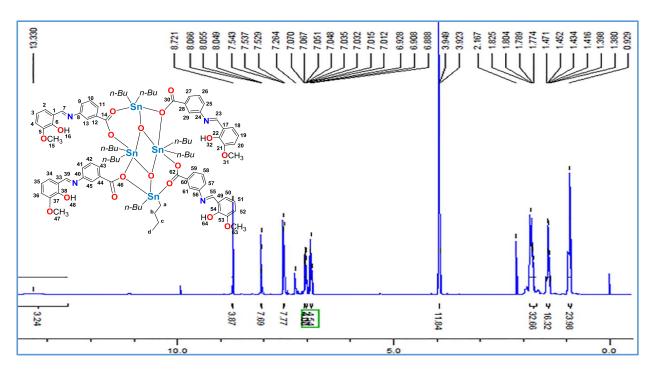
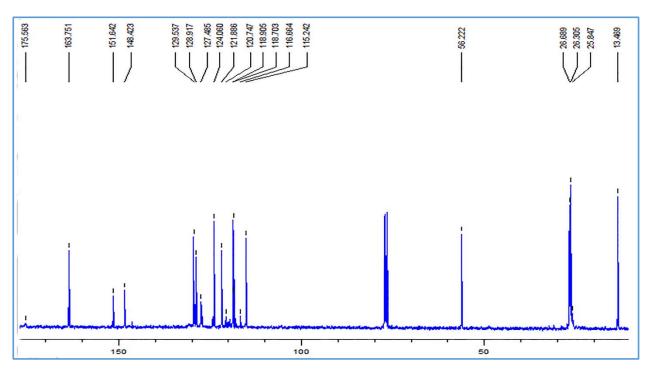



Figure S11: ¹H NMR spectrum of complex 3 recorded in CDCl₃.

Figure S12: ¹³C{¹H} NMR spectrum of complex **3** recorded in CDCl₃.

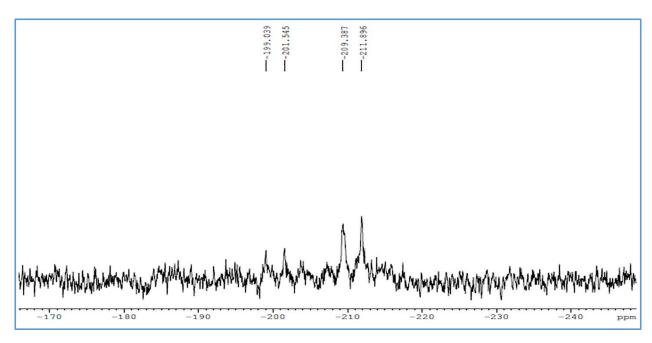


Figure S13: 119Sn NMR spectrum of complex 3 recorded in CDCl₃

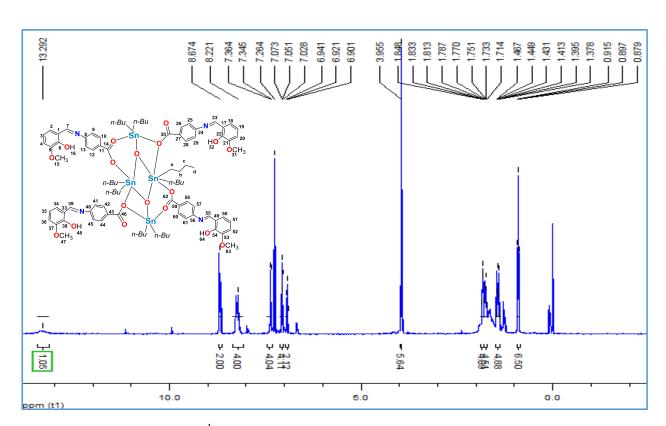
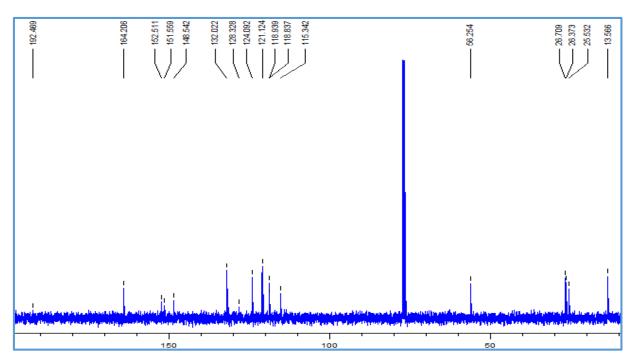
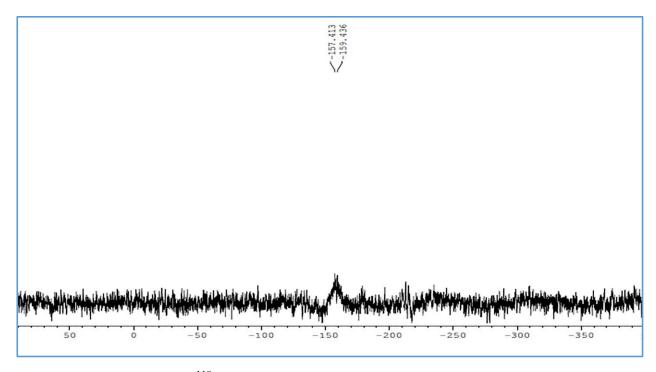
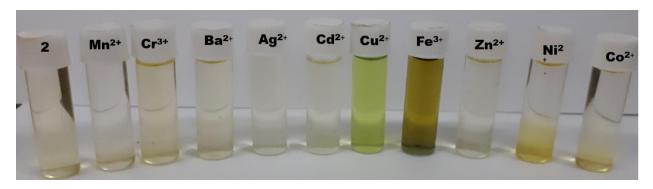
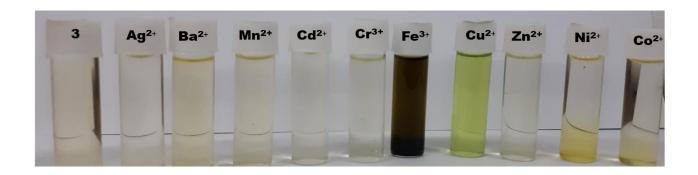
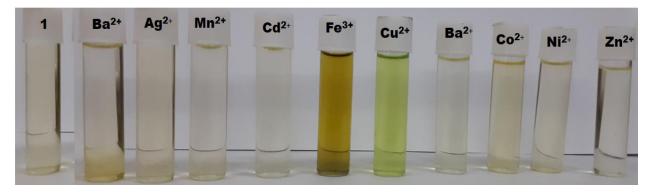
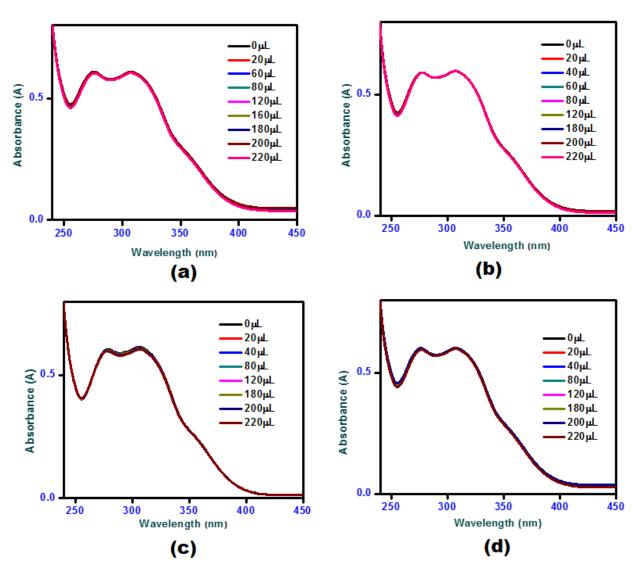



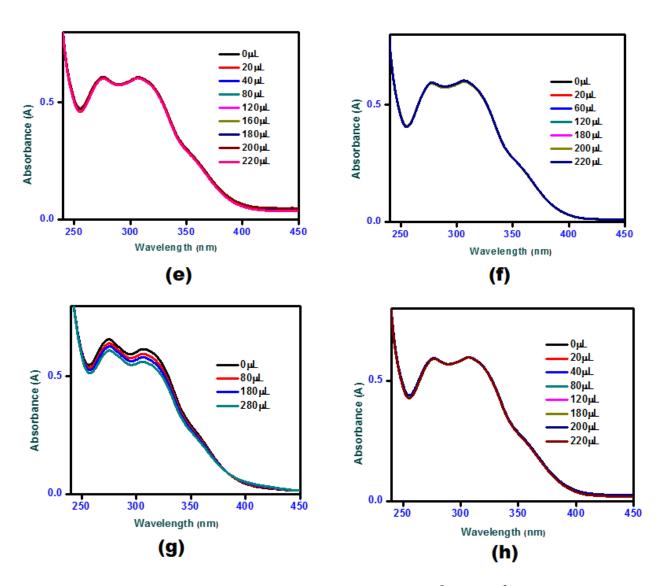
Figure S14: ¹H NMR spectrum of complex 4 recorded in CDCl₃.

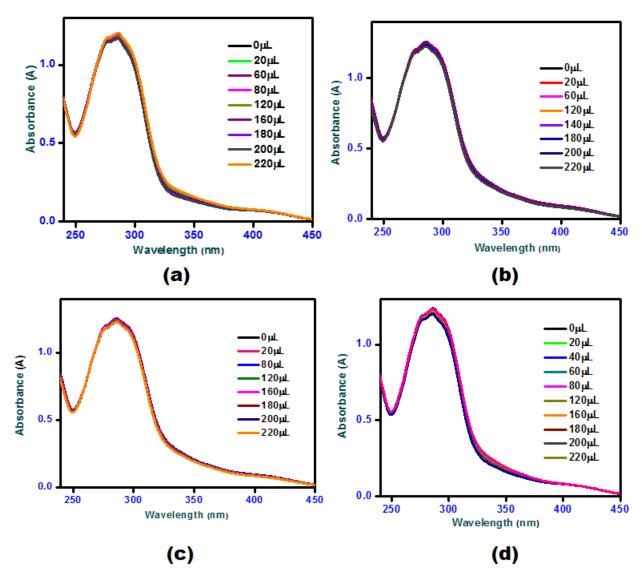
Figure S15: ¹³C{¹H} NMR spectrum of complex **4** recorded in CDCl₃.

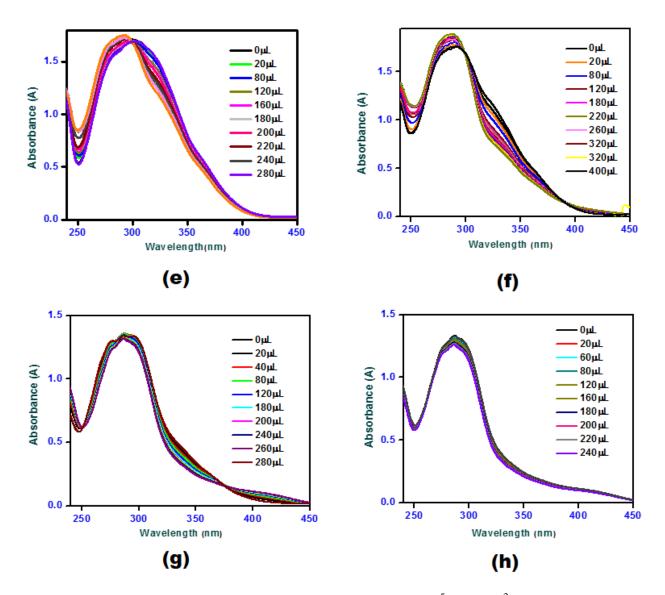




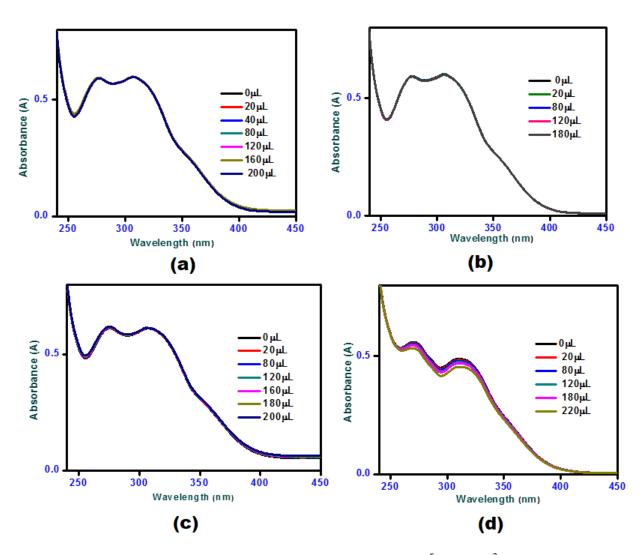

Figure S16: ¹¹⁹Sn NMR spectrum of complex 4 recorded in CDCl₃

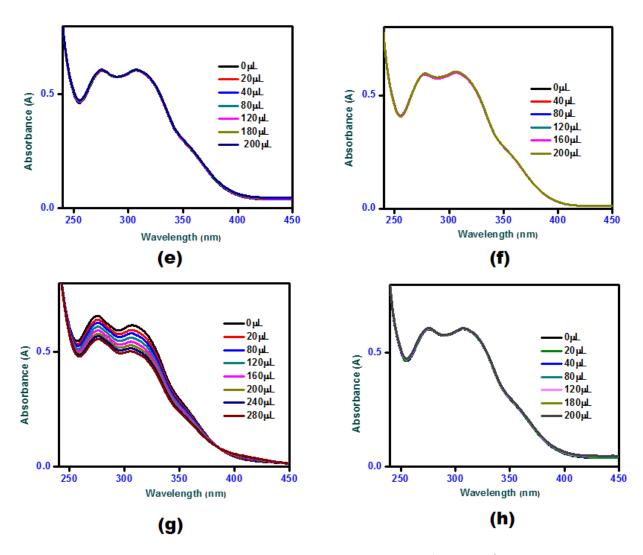

Figure S17: Naked-eye color changes observed due to the addition of equivalent amounts of metal salts in complex **2**.

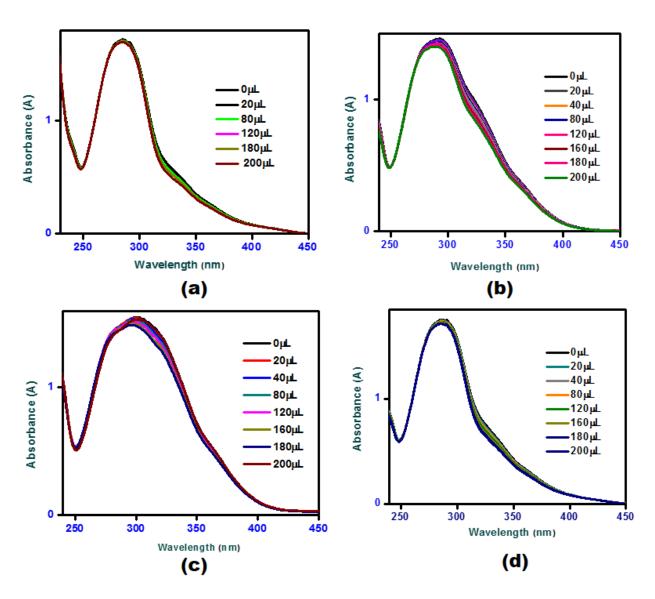

Figure S18: Naked-eye color changes observed due to the addition of equivalent amounts of metal salts in complex **3**.

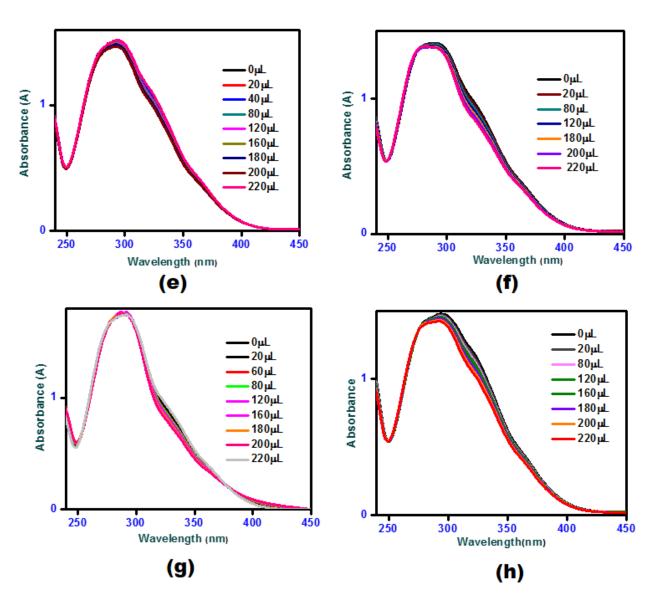

Figure S19: Naked-eye color changes observed due to the addition of equivalent amounts of metal salts in complex **4**

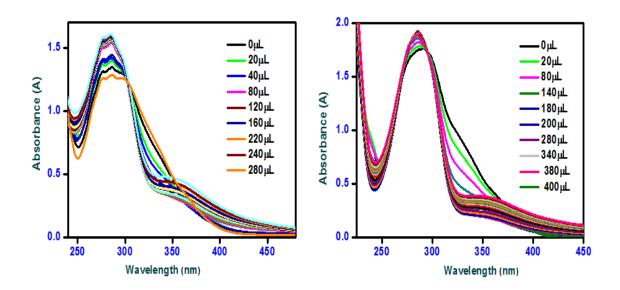

Figure S20: Absorption spectral variation of complex **1** (2 x 10^{-5} mol dm⁻³) with the addition of 1-5 equivalent of nitrate salts (2 x 10^{-4} mol dm⁻³) of (a) Ag⁺ (b) Ba²⁺ (c) Cd²⁺ (d) Co²⁺in DCM-methanol (1:9).

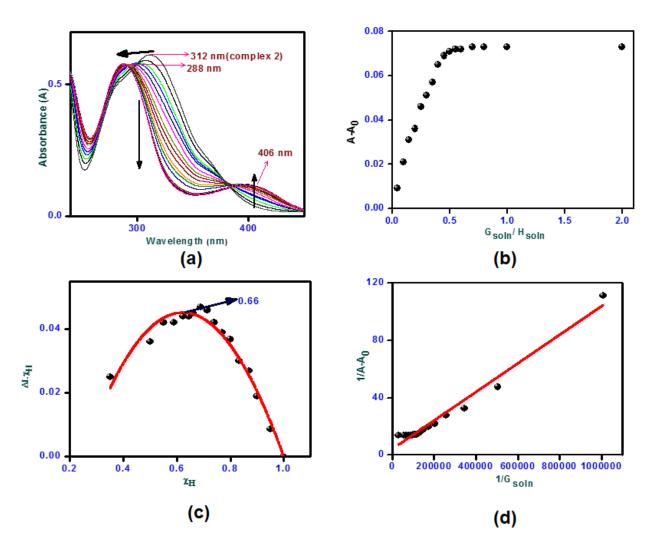

Figure S21: Absorption spectral variation of complex **1** (2 x 10^{-5} mol dm⁻³) with the addition of 1-5 equivalent of nitrate salts (2 x 10^{-4} mol dm⁻³) of (e) Cr³⁺ (f) Mn²⁺ (g) Ni²⁺ (h) Zn²⁺in DCM-methanol (1:9).

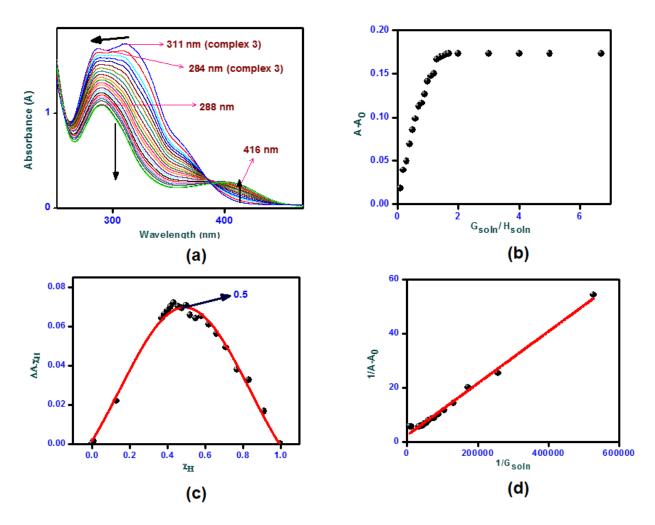

Figure S22: Absorption spectral variation of complex **2** (2 x 10⁻⁵ mol dm⁻³) with the addition of 1-5 equivalent of nitrate salts (2 x 10⁻⁴ mol dm⁻³) of (**a**) Ag⁺ (**b**) Ba²⁺ (**c**) Cd²⁺ (**d**) Co²⁺in DCM-methanol (1:9).

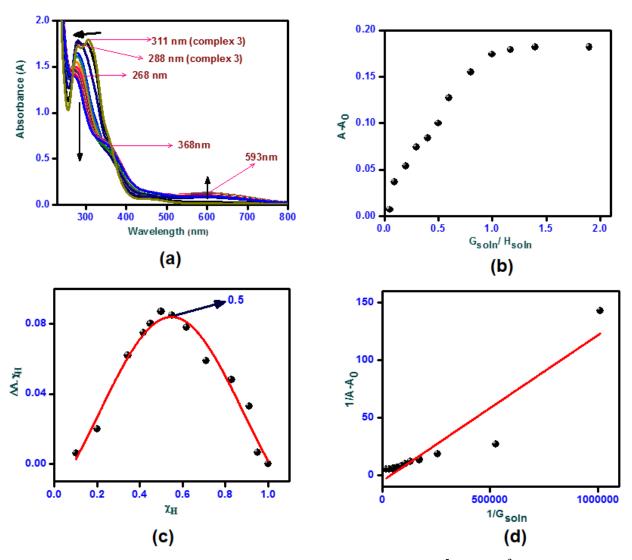

Figure S23: Absorption spectral variation of complex **2** (2 x 10^{-5} mol dm⁻³) with the addition of 1-5 equivalent of nitrate salts (2 x 10^{-4} mol dm⁻³) of (e) Cr³⁺ (f) Mn²⁺ (g) Ni²⁺ (h) Zn²⁺in DCM-methanol (1:9).

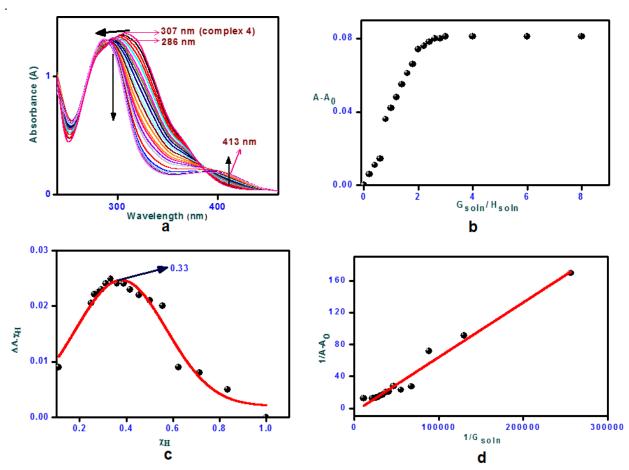

Figure S24: Absorption spectral variation of complex **3** (2 x 10^{-5} mol dm⁻³) with the addition of 1-5 equivalent of nitrate salts (2 x 10^{-4} mol dm⁻³) of (a) Ag⁺ (b) Ba²⁺ (c) Cd²⁺ (d) Co²⁺ in DCM-methanol(1:9).

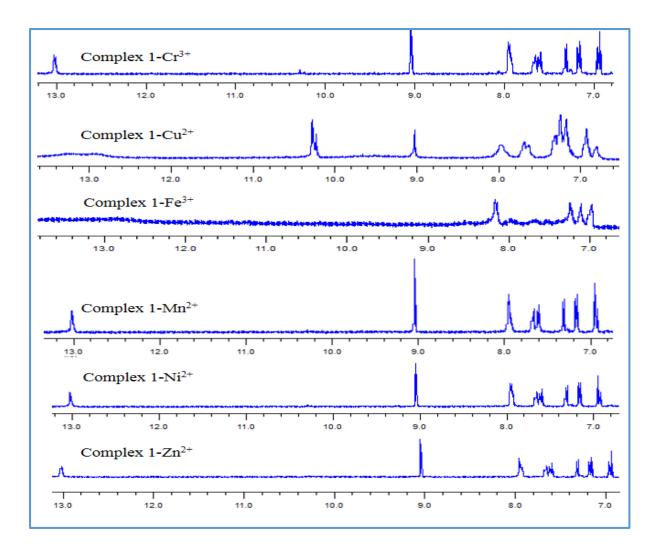

Figure S25: Absorption spectral variation of complex **3** (2 x 10^{-5} mol dm⁻³) with the addition of 1-5 equivalent of nitrate salts (2 x 10^{-4} mol dm⁻³) of (e) Cr³⁺ (f) Mn²⁺ (g) Ni²⁺ (h) Zn²⁺in DCM-methanol (1:9).


Figure S26: Absorption spectral variation of complex **4** (2 x 10^{-5} mol dm⁻³) with the addition of 1-5 equivalent of nitrate salts (2 x 10^{-4} mol dm⁻³) of (**a**) Ag⁺ (**b**) Ba²⁺ (**c**) Cd²⁺ (**d**) Co²⁺in DCM-methanol (1:9).


Figure S27: Absorption spectral variation of complex **4** (2 x 10⁻⁵ mol dm⁻³) with the addition of 1-5 equivalent of nitrate salts (2 x 10⁻⁴ mol dm⁻³) of (**e**) Cr³⁺ (**f**) Mn²⁺ (**g**) Ni²⁺ (**h**) Zn²⁺in DCM-methanol (1:9).


Figure S28: Absorption spectral variation of complex **2** and **4** (2 x 10⁻⁵ mol dm⁻³) with the addition of 1-5 equivalent of ferric nitrate nonahydrate (2 x 10⁻⁴ mol dm⁻³) in DCM-methanol (1:9).


Figure S29: (a) Absorption spectral variation of complex 2 (2 x 10⁻⁵ mol dm⁻³) with the addition of 1-5 equivalent of copper(II) nitrate trihydrate (2 x 10⁻⁴ mol dm⁻³) in DCM-methanol (1:9). (b) The stoichiometric plot of complex 2 with copper(II) nitrate trihydrate. (c) Job's plot of Complex 2 with copper(II) nitrate trihydrate. (d) Benesi-Hildebrand plot complex 2 with the addition of copper(II) nitrate trihydrate.


Figure S30: (a) Absorption spectral variation of complex **3** (2 x 10⁻⁵ mol dm⁻³) with the addition of 1-5 equivalent of copper nitrate trihydrate (2 x 10⁻⁴ mol dm⁻³) in DCM-methanol (1:9). (b) The stoichiometric plot of complex **3** with copper(II) nitrate trihydrate. (c) Job's plot of Complex **3** with copper(II) nitrate trihydrate. (d) Benesi-Hildebrand plot complex **3** with the addition of copper(II) nitrate trihydrate.

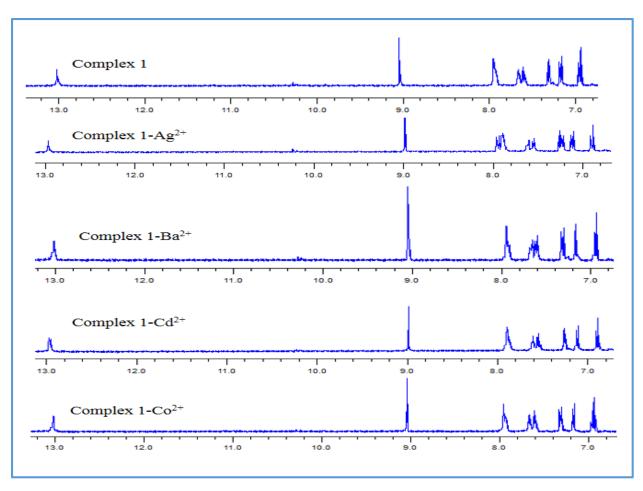
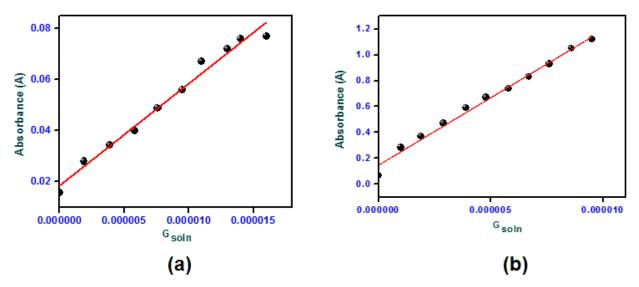


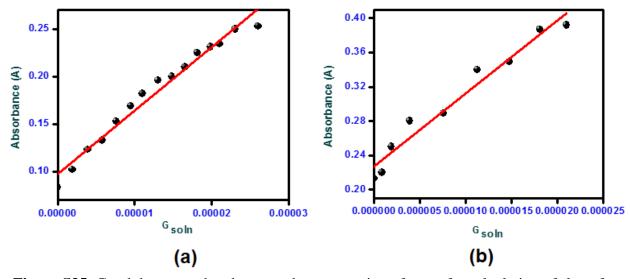
Figure S31: (a) Absorption spectral variation of complex **3** (2 x 10⁻⁵ mol dm⁻³) with the addition of 1-3 equivalent of ferric nitrate nonahydrate (2 x 10⁻⁴ mol dm⁻³) in DCM-methanol (1:9). (b) The stoichiometric plot of Complex **3** with ferric nitrate nonahydrate. (c) Job's plot of Complex **3** with ferric nitrate nonahydrate. (d) Benesi-Hildebrand plot complex **3** with the addition of ferric nitrate nonahydrate.

Figure S32: (a) Absorption spectral variation of complex **4** (2 x 10⁻⁵ mol dm⁻³) with the addition of 1-5 equivalent of copper nitrate trihydrate (2 x 10⁻⁴ mol dm⁻³) in DCM-methanol (1:9). (b) The stoichiometric plot of complex **4** with copper(II) nitrate trihydrate. (c) Job's plot of complex **4** with copper(II) nitrate trihydrate. (d) Benesi-Hildebrand plot complex **4** with the addition of copper(II) nitrate trihydrate.

Figure S33: Changes in partial ¹H NMR spectra of complex **1** with the addition of an equivalent amount of selected metal ions in DMSO-d₆.


LOD (Limit of Detection) for complex 1-4 with Cu^{2+} and Fe^{3+} ion

LOD was calculated for all complexes with Cu^{2+} and Fe^{3+} was calculated on the basis of absorption data. To determine the standard deviation for the absorbance, the absorbance of the individual receptors without any cation was measured by 15 times and the standard deviation of blank measurements was calculated.


The limit of detection (LOD) of the receptors for sensing Cu^{2+} and Fe^{3+} was determined from the following equation:

$LOD = K \times SD/S$

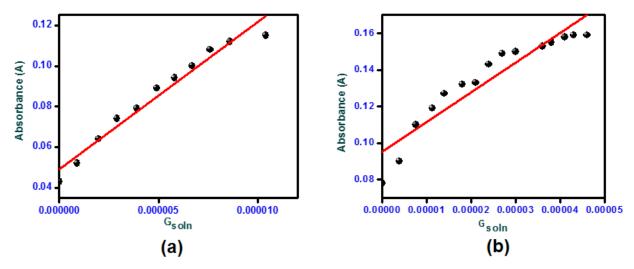

Where K = 3 (according to IUPAC consideration); SD is the standard deviation of the blank receptor (complex 1-4) solution; S is the slope of the calibration curve. From the linear fit graph, we get a slope for all complexes. Thus using the above formula we get the Limit of Detection.

Figure S34: Graph between absorbance and concentration of guest for calculation of slope for (a) Cu^{2+} (b) Fe^{3+} for complex 1.

Figure S35: Graph between absorbance and concentration of guest for calculation of slope for (a) Cu^{2+} (b) Fe^{3+} for complex 3.

Figure S36: Graph between absorbance and concentration of guest for calculation of slope for **(a)** Cu²⁺ for complex **2 (b)** Cu²⁺ for complex **4**.

X-ray crystallography

The intensity data of **1-4** were collected on a Rigaku SuperNova diffractometer equipped with an Eos S2 CCD detector, using MoK α radiation with graphite monochromator (λ = 0.71073 Å) at T = 293(2) or 100(2) K. The structure was solved by SHELXT and refined on F^2 by full-matrix least-squares methods using SHELXL using Olex2 as the graphical interface. Non-hydrogen atoms were anisotropically refined. H-atoms were included in the refinement on calculated positions riding on their carrier atoms. The function minimized F_0^2 from counting statistics. The function R_1 and wR_2 were $(\sigma||F_0| - |F_c||) / \sigma|F_0|$ and $[\sigma w (F_0^2 - F_c^2)^2 / \sigma(wF_0^4)]^{1/2}$, respectively. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited in the Cambridge Crystallographic Data Centre as a supplementary publication no. CCDC 1895986-1895989. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: + (44)1223-336-033; email: deposit@ccdc.cam.ac.uk

References:

- 1. Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.
- 2. O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.