Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

Anodic fabrication of nanostructured Cu_xS and $CuNiS_x$ thin films and their hydrogen evolution activities in acidic electrolytes

Iranna Udachyan¹, Vishwanath R S², Pradeep Kumara C S¹, Sakthivel Kandaiah^{1*}

¹School of Chemical Sciences, REVA University, Bangalore, Karnataka-560064, India.

²Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland

Figure S1

Figure S1 : Repeated cyclic voltammograms of CuxS in 0.5 M Na_2SO_4 . 1 – Represent the first cycle, 2 indicates the lower reduction current density for the second cathodic peak.

Figure S3 : LSVs of different electrodes before and after chronoamperometric stability tests a) $CuNiS_x$, (b) CuNi, (c) Cu_xS

Figure S4:Potential dependant Nyquist plots of (a) $CuNiS_x$, (b) CuNi, (c) Cu_xS in 0.5 M H₂SO₄. 1 – at -0.2 V, 2 at -0.3 V and 3 at -0,4 V vs RHE

Figure S5: Constant potential stability test of (1) Cu_xS , (2) CuNi, (3) $CuNiS_x$ performed in 0.5M H_2SO_4 using carbon rod as counter electrode.

At higher oxygen evolution rates, the surface of carbon rod undergo formation of loose carbon particles and come into the electrolyte solution. However the current density behaviour are similar to the Pt counter.

Table S1: Comparison of overpotential requirement and Tafel slope values for different electrocatalyst and the present thin film electrode materials.

Electrocatalyss	Cathodic overpotential for 10 mA	Tafel Slope /
	cm^{-2} in 0.5 M H ₂ SO ₄ /mv	mV/dec
Pt/C	30	30
MoS ₂	230	101
MoS ₂ /RGO	150	40
MoS ₂ -CoSe ₂	68	36
CoSe ₂	130	48
NiSe ₂	230	57
NiS ₂	240	42
CoS ₂	230	44
FeS ₂	270	62
*Cu _x S	270	102
*CuNiS _x	213	98
*CuNi	195	128
Cu - bare	465	158

'present work, direct deposition by electrochemical method, without any conductive binders

References

- M. Gao, J. Liang, Y. Zheng, Y. Xu, J. Jiang, Q. Gao, J. Li and S. Yu, "An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation," *Nat commun*, 6, 5982 (2015).
- D. Kong, J J. Cha, H. Wang, H. Ryoung Lee, and Yi Cui, First-Row Transition Metal Dichalcogenide Catalysts for Hydrogen Evolution Reaction, *Energy Environ. Sci.*, 2013,6, 3553-3558m (2013)
- J. Nan, B. Lia, P. Marina, G. Sheraz, Y. Junko and, S. Yujie, "Electrodeposited nickelsulfide films as competent hydrogen evolution catalysts in neutral water," *J. Mater Chem. A*, 2, 19407-19414 (2014).
- T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch and I. Chorkendorff, "Identification of active edge sites for electrochemical H₂ evolution from MoS₂ nanocatalysts," *Science*, **317**, 100-102 (2007).
- B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch , I. Chorkendorff and J. K. Nørskov, "Biomimetic Hydrogen Evolution: MoS₂ Nanoparticles as Catalyst for Hydrogen Evolution," *J. Am. Chem. Soc*, **127**, 5308-5309 (2005).