## **Electronic Supplementary Information**

## Half-lantern cyclometalated Pt(II) and Pt(III) complexes with bridging heterocyclic thiolate ligands: Synthesis, structural characterization, electrochemical and photophysical properties

Hamid R. Shahsavari,<sup>a</sup>\* Elena Lalinde,<sup>b</sup> M. Teresa Moreno,<sup>b</sup>\* Maryam Niazi,<sup>a</sup> Sayed Habib Kazemi,<sup>a</sup> Sedigheh Abedanzadeh,<sup>c</sup> Mohammad Barazandeh,<sup>a</sup> and Mohammad Reza Halvagar<sup>d</sup>

<sup>a</sup>Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.

<sup>b</sup>Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.

<sup>c</sup>Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran

<sup>d</sup>Chemistry & Chemical Engineering Research Center of Iran, Tehran, 14968-13151, Iran.

Email: <a href="mailto:shahsavari@iasbs.ac.ir">shahsavari@iasbs.ac.ir</a>; <a href="mailto:teresa.moreno@unirioja.es">teresa.moreno@unirioja.es</a>

| Contents:                                                                                                                  | Page |  |
|----------------------------------------------------------------------------------------------------------------------------|------|--|
| Table S1. Crystal data and structure refinements of complexes 1d and 2c·CHCl <sub>3</sub> .                                | 3    |  |
| Crystal Structure of 1d.                                                                                                   |      |  |
| Figure S1 (a) ORTEP plot of the structure of 1d. (b) top ORTEP view of 1d structure along                                  | 4-5  |  |
| with the Pt…Pt axis.                                                                                                       |      |  |
| Figure S2. <sup>1</sup> H NMR following experiment for conversion of <b>1a</b> to <b>2a</b> in CDCl <sub>3</sub> at 298 K. |      |  |
| Figure S3. Normalized absorption spectra of 1a-e in the solid state at 298 K.                                              |      |  |
| <b>Figure S4.</b> Normalized emission spectra of <b>1a-e</b> in $CH_2Cl_2$ (5×10 <sup>-5</sup> M) at 298 K.                | 7    |  |
| References                                                                                                                 | 8    |  |

|                                   | 1d                       | 2c·CHCl <sub>3</sub>                     |
|-----------------------------------|--------------------------|------------------------------------------|
| Formula                           | $C_{36}H_{24}N_4Pt_2S_4$ | $C_{30}H_{22}Cl_2N_6Pt_2S_2\cdot CHCl_3$ |
| Formula weight                    | 1030.80                  | 1110.90                                  |
| Т, К                              | 293(2)                   | 293(2)                                   |
| Crystal system                    | Monoclinic               | Monoclinic                               |
| Space group                       | P2 <sub>1</sub> /c       | P2 <sub>1</sub> /c                       |
| <i>a</i> (Å)                      | 12.280(3)                | 10.492(2)                                |
| <i>b</i> (Å)                      | 12.690(3)                | 24.782(5)                                |
| <i>c</i> (Å)                      | 21.636(4)                | 13.530(3)                                |
| $\alpha$ (deg)                    | 90                       | 90                                       |
| $\beta$ (deg)                     | 99.26(3)                 | 99.24(3)                                 |
| γ (deg)                           | 90                       | 90                                       |
| Ζ                                 | 4                        | 4                                        |
| Density, Mg/m <sup>3</sup>        | 2.058                    | 2.125                                    |
| Reflections collected             | 22128                    | 10780                                    |
| Independent reflections           | 5767                     | 4961                                     |
|                                   | [R(int) = 0.1165]        | [R(int) = 0.1610]                        |
| Data / restraints /               | 5767 / 0 / 416           | 4961 / 0 / 367                           |
| parameters                        |                          |                                          |
| Goodness-of-fit on F <sup>2</sup> | 0.939                    | 1.013                                    |
| Final R indices                   | R1 = 0.0278,             | R1 = 0.0636,                             |
| [I>2sigma(I)]                     | wR2 = 0.0465             | wR2 = 0.1529                             |
| R indices (all data)              | R1 = 0.0676,             | R1 = 0.0802,                             |
|                                   | wR2 = 0.0500             | wR2 = 0.1588                             |
| CCDC No.                          | 1820794                  | 1820795                                  |

Table S1. Crystal data and structure refinements of complexes 1d and  $2c \cdot CHCl_{3.}$ 

## **Crystal Structure of 1d**

The ORTEP view of the molecular structure of **1d** is depicted in the Figure S1a and the crystal data and structural refinement parameters from the X-ray single-crystal analysis is summarized in the Table S1. As expected, complex **1d** contains two Pt(ppy) units doubly bridged by two 2-mercaptobenzothiozolate ligands arranging in head-to-tail manner, with short Pt…Pt distance of 2.9423(7) Å, slightly shorter than that found for **1d**·CH<sub>2</sub>Cl<sub>2</sub> [2.9694(3) Å].<sup>1</sup> Each Pt(II) center is located in a slightly distorted planar environment, surrounded by two ppy chelating moieties, while two thiolate ligands link two Pt(II) centers as bridging groups producing structures with *anti*-configuration. However, the strong Pt–C bonds certainly influence their *trans* positions preferring the N-coordination to the S-coordination of the N^S ligands and Pt–N distances at the *trans* positions definitely lengthen as expected.<sup>2, 3</sup> Moreover, the crystal packing of complex **1d** displayed no  $\pi$ — $\pi$  ppy intermolecular interactions.

Figure S1b exposes a top ORTEP view of **1d** structure along with the Pt<sup>...</sup>Pt axis, clearly illustrating an offset arrangement of the upper and lower ppy cyclometalating ligands. This configuration would has certainly effect on the torsion angels of bridging ligands toward the Pt<sup>...</sup>Pt axis.



**(a)** 





**Figure S1. (a)** ORTEP plot of the structure of **1d** with the atom labeling scheme. Hydrogen atoms are omitted for clarity. Ellipsoids are drawn at the 30% probability level. Selected bond lengths (Å) and angles (deg): Pt1-Pt2 2.9423(7), Pt1-N4(ppy) 2.051(6), Pt1-S3 2.289(2), Pt1-N1(Spy) 2.141(6), Pt1-C28 1.983(8), N1(Spy)-Pt1-N4(ppy) 93.6(2), N1(Spy)-Pt1-S3 90.71(17), N4(ppy)-Pt1-C28 80.9(3), N1(Spy)-Pt1-Pt2-N2(Spy) 73.4(3), N4(ppy)-Pt1-Pt2-N3(ppy) 100.8(3). **(b)** Top ORTEP view of **1d** structure along with the Pt…Pt axis.



Figure S2. <sup>1</sup>H NMR following experiment for conversion of 1a to 2a in CDCl<sub>3</sub> at 298 K. 1) Complex 1a, 2) 15 min, 3) 30 min, 4) 1 h, 5) 2 h, 6) 4 h and 7) 6 h after dissolving of 1a in CDCl<sub>3</sub>.



Figure S3. Normalized absorption spectra of 1a-e in the solid state at 298 K.



Figure S4. Normalized emission spectra of 1a-e in  $CH_2Cl_2$  (5×10<sup>-5</sup> M) at 298 K ( $\lambda_{ex}$  480 nm).

## **References:**

- 1. Y. Zhu, K. Luo, L. Zhao, H. Ni and Q. Li, *Dyes Pigm.*, 2017, 145, 144-151.
- 2. E. V. Puttock, M. T. Walden and J. A. G. Williams, *Coord. Chem. Rev.*, 2018, **367**, 127-162.
- 3. M. Yoshida and M. Kato, *Coord. Chem. Rev.*, 2018, **355**, 101-115.