ESI for New Journal of Chemistry

Supplementary Information

Novel styrylpyrazole-glucosides and their dioxolo-bridged doppelgangers: synthesis and cytotoxicity

Ana R. F. Carreira, ^a David M. Pereira, ^b Paula B. Andrade, ^b Patrícia Valentão, ^b Artur M. S. Silva, ^a Susana Santos Braga,^{*a} Vera L. M. Silva ^{*a}

 ^a Chemistry Department, QOPNA and LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
^b REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal

Emails: sbraga@ua.pt and verasilva@ua.pt

Table of Contents:

1. NMR spectra	S3
Figure S1. ¹ H NMR spectrum of compound 1d (CDCl ₃ , 300.13 MHz)	S 3
Figure S2. ¹³ C NMR spectrum of compound 1d (CDCl ₃ , 75.47 MHz)	S 3
Figure S3. ¹ H NMR spectrum of compound 2a [(CD ₃) ₂ CO, 500.16 MHz]	S 4
Figure S4. ¹³ C NMR spectrum of compound 2a [(CD ₃) ₂ CO, 125.77 MHz]	S 4
Figure S5. ¹ H NMR spectrum of compound 2b [(CD ₃) ₂ CO, 300.13 MHz]	S5
Figure S6. ¹³ C NMR spectrum of compound 2b [(CD ₃) ₂ CO, 75.47 MHz]	S5
Figure S7. ¹ H NMR spectrum of compound 2c [(CD ₃) ₂ CO, 500.16 MHz]	S 6
Figure S8. ¹³ C NMR spectrum of compound 2c [(CD ₃) ₂ CO, 75.47 MHz]	S 6
Figure S9. ¹ H NMR spectrum of the mixture of (E) - and (Z) -isomers of compound 2d	
[(CD ₃) ₂ CO, 500.16 MHz]	S 7
Figure S10. ¹³ C NMR spectrum of the mixture of (E)- and (Z)-isomers of compound 2d	
[(CD ₃) ₂ CO, 125.77 MHz]	S7
Figure S11. ¹ H NMR spectrum of compound 3a [(CD ₃) ₂ CO, 500.16 MHz]	S 8
Figure S12. ¹³ C NMR spectrum of compound 3a [(CD ₃) ₂ CO, 125.77 MHz]	S 8
Figure S13. ¹ H NMR spectrum of compound 3b [(CD ₃) ₂ CO, 300.13 MHz]	S 9
Figure S14. ¹³ C NMR spectrum of compound 3b [(CD ₃) ₂ CO, 75.47 MHz]	S 9
Figure S15. ¹ H NMR spectrum of compound 3c [(CD ₃) ₂ CO, 500.16 MHz]	S10

Figure S16. ¹³ C NMR spectrum of compound 3c [(CD ₃) ₂ CO, 75.47 MHz]	S 10
Figure S17. ¹ H NMR spectrum of the mixture of (E) - and (Z) -isomers of compound 3d	
[(CD ₃) ₂ CO, 300.13 MHz]	S 11
Figure S18. ¹ H NMR spectrum of compound 4a [(CD ₃) ₂ CO, 500.16 MHz]	S 11
Figure S19. ¹³ C NMR spectrum of compound 4a [(CD ₃) ₂ CO, 75.47 MHz]	S12
Figure S20. ¹ H NMR spectrum of compound 4b [(CD ₃) ₂ CO, 500.16 MHz]	S12
Figure S21. ¹³ C NMR spectrum of compound 4b [(CD ₃) ₂ CO, 75.47 MHz]	S 13
Figure S22. ¹ H NMR spectrum of compound 4c [(CD ₃) ₂ CO, 500.16 MHz]	S 13
Figure S23. ¹³ C NMR spectrum of compound 4c [(CD ₃) ₂ CO, 75.47 MHz]	S14
Figure S24. ¹ H NMR spectrum of the mixture of (E) - and (Z) -isomers of compound 4d	
[CD ₃) ₂ CO, 300.13 MHz]	S14
Figure S25. ¹ H NMR spectrum of compound 5b [(CD ₃) ₂ CO, 500.16 MHz]	S15
Figure S26. ¹³ C NMR spectrum of compound 5b [(CD ₃) ₂ CO, 75.47 MHz]	S15
Figure S27. ¹ H NMR spectrum of compound 5c [(CD ₃) ₂ CO, 500.16 MHz]	S16
Figure S28. ¹³ C NMR spectrum of compound 5c [(CD ₃) ₂ CO, 75.47 MHz]	S 16

ESI for New Journal of Chemistry

1. NMR spectra

Figure S1. ¹H NMR spectrum of compound 1d (CDCl₃, 300.13 MHz).

Figure S2. ¹³C NMR spectrum of compound 1d (CDCl₃, 75.47 MHz).

Figure S3. ¹H NMR spectrum of compound 2a [(CD₃)₂CO, 500.16 MHz].

Figure S4. ¹³C NMR spectrum of compound 2a [(CD₃)₂CO, 125.77 MHz].

Figure S5. ¹H NMR spectrum of compound 2b [(CD₃)₂CO, 300.13 MHz].

Figure S6. ¹³C NMR spectrum of compound 2b [(CD₃)₂CO, 75.47 MHz].

Figure S7. ¹H NMR spectrum of compound 2c [(CD₃)₂CO, 500.16 MHz].

Figure S8. ¹³C NMR spectrum of compound 2c [(CD₃)₂CO, 75.47 MHz].

Figure S9. ¹H NMR spectrum of the mixture of (*E*)- and (*Z*)-isomers of compound 2d $[(CD_3)_2CO, 500.16 \text{ MHz}].$

Figure S10. ¹³C NMR spectrum of the mixture of (*E*)- and (*Z*)-isomers of compound 2d $[(CD_3)_2CO, 125.77 \text{ MHz}].$

Figure S11. ¹H NMR spectrum of compound **3a** [(CD₃)₂CO, 500.16 MHz].

Figure S12. ¹³C NMR spectrum of compound 3a [(CD₃)₂CO, 125.77 MHz].

Figure S13. ¹H NMR spectrum of compound 3b [(CD₃)₂CO, 300.13 MHz].

Figure S14. ¹³C NMR spectrum of compound 3b [(CD₃)₂CO, 75.47 MHz].

Figure S15. ¹H NMR spectrum of compound 3c [(CD₃)₂CO, 500.16 MHz].

Figure S16. ¹³C NMR spectrum of compound 3c [(CD₃)₂CO, 75.47 MHz].

Figure S17. ¹H NMR spectrum of the mixture of (*E*)- and (*Z*)-isomers of compound **3d** $[(CD_3)_2CO, 300.13 \text{ MHz}].$

Figure S18. ¹H NMR spectrum of compound 4a [(CD₃)₂CO, 500.16 MHz].

Figure S19. ¹³C NMR spectrum of compound 4a [(CD₃)₂CO, 75.47 MHz].

Figure S20. ¹H NMR spectrum of compound 4b [(CD₃)₂CO, 500.16 MHz].

Figure S21. ¹³C NMR spectrum of compound 4b [(CD₃)₂CO, 75.47 MHz].

Figure S22. ¹H NMR spectrum of compound 4c [(CD₃)₂CO, 500.16 MHz].

Figure S23. ¹³C NMR spectrum of compound 4c [(CD₃)₂CO, 75.47 MHz].

Figure S24. ¹H NMR spectrum of the mixture of (*E*)- and (*Z*)-isomers of compound **4d** $[(CD_3)_2CO, 300.13 \text{ MHz}].$

Figure S25. ¹H NMR spectrum of compound 5b [(CD₃)₂CO, 500.16 MHz].

Figure S26. ¹³C NMR spectrum of compound 5b [(CD₃)₂CO, 75.47 MHz].

Figure S27. ¹H NMR spectrum of compound 5c [(CD₃)₂CO, 500.16 MHz].

Figure S28. ¹³C NMR spectrum of compound 5c [(CD₃)₂CO, 75.47 MHz].