Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information for:

"Model Study on Trapping of Protein Selenenic Acids by Utilizing a Stable Synthetic Congener"

Shohei Sase, Ryutaro Kimura, Ryosuke Masuda, and Kei Goto*

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

Contents

1. Experimental section	2
2. NMR data	11
3. References	23

1. Experimental Section

General experimental methods: Unless otherwise stated, all operations were performed by using high-vacuum and standard Schlenk techniques under an argon atmosphere. THF (anhydrous) was purchased from Kanto Chemical and passed through a Kayama Oxygen solvent purification system prior to use. Other solvents were purchased from commercial sources and used as received. $S1^1$, $S2^2$, 5^3 , and cyclooctyne $(14)^4$ were prepared according to the literature procedure. Other chemicals were purchased from commercial sources and used as received. Silica gel column chromatography was performed using Kanto silica gel N60 or Merck silica gel 60. Preparative thin layer chromatography (PTLC) was performed using Merck silica gel 60 PF₂₅₄. ¹H NMR spectra were recorded on a JEOL ECS-400, a JEOL ECX-500, or a JEOL ECZ-500, and the chemical shifts of ¹H are referenced to the residual proton signal of CDCl₃ (δ 7.25) or C₆D₆ (δ 7.15). ¹³C NMR spectra were recorded on JEOL ECS-400, a JEOL ECX-500, or a JEOL ECZ-500, and the chemical shifts of ¹³C are referenced to the signal of CDCl₃ (δ 77.0) or C₆D₆ (δ 128.0). ⁷⁷Se NMR spectra were recorded on a JEOL ECX-500, and the chemical shifts of ⁷⁷Se are referenced to the diphenyl diselenide (δ 480) as external standard. All spectra were assigned with the aid of DEPT, COSY, HMQC, and HMBC NMR experiments. IR spectra were recorded on a JASCO FT/IR-4100 by utilizing a KBr disk. Mass spectra were measured on a JEOL JMS-T100GCv "AccuTOF GCv" using a field desorption probe. Melting points were measured with a Yanaco MP-S3 and are uncorrected.

Synthesis of quinquephenyl bromide S3.

To a Grignard reagent prepared by the reaction of 2-bromo-1,3-diisopropylbenzene (**S1**) (12.97 g, 27.2 mmol) and magnesium turnings (0.9476 g, 39.0 mmol) in THF (50 mL) was added a solution of 1,3,5-tribromo-2-iodobenzene (**S2**) (4.179 g, 9.48 mmol) over 30 min at 75 °C. The reaction mixture was stirred at 75 °C overnight and then treated with 1 M HCl at 0 °C. After extraction with ether, the combined organic layer was dried over MgSO₄ and evaporated in vacuo. To the resulting oily mixture was added EtOH to precipitate white solids, which was collected by filtration. It was purified by silica gel column chromatography (hexane:CHCl₃ = 7:1) to give quinquephenyl bromide **S3** (6.923 g, 7.29 mmol, 80%) as colorless crystals.

S3: colorless crystals; M.p. >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.04 (d, J = 6.8 Hz, 24H), 1.14 (d, J = 6.8 Hz, 24H), 2.73 (sept, J = 6.8 Hz, 8H), 7.03 (t, J = 1.5 Hz, 2H), 7.19 (d, J = 7.7 Hz, 8H), 7.32 (t, J = 7.7 Hz, 4H), 7.39 (d, J = 1.5 Hz, 4H), 7.69 (d, J = 1.5 Hz, 2H), 7.73 (t, J = 1.5 Hz, 1H); ¹³C NMR (100 MHz,

CDCl₃) δ 24.2 (q), 24.3 (q), 30.4 (d), 122.6 (d), 123.3 (s), 125.2 (d), 126.5 (d), 128.1 (d), 129.5 (d), 130.6 (d), 138.8 (s), 139.5 (s), 141.3 (s), 143.7 (s), 146.7 (s). Anal. Calcd. for C₆₆H₇₇Br: C, 83.42; H, 8.17. Found: C, 83.69; H, 8.47.

Synthesis of arylboronic acid pinacol ester 4.

To a solution of **S3** (6.923 g, 7.29 mmol) in THF (30 mL) was added *n*-BuLi (1.5 M in hexane, 5.2 mL, 7.8 mmol) at -78 °C over 30 min. After the reaction mixture was stirred for 30 min at -78 °C, trimethyl borate (0.86 mL, 7.7 mmol) was added at -78 °C, and it was allowed to warm to room temperature and stirred overnight. The reaction mixture was treated with 1 M HCl and extracted with Et₂O. The combined organic layer was dried over MgSO₄, and the solvent was evaporated in vacuo. To the resulting residue was added THF (15 mL) and pinacol (0.860 g, 7.28 mmol), and it was stirred at 78 °C overnight. After evaporation of the solvent, the crude mixture was purified by silica gel column chromatography (hexane:CHCl₃ = 7:1) to give **4** (4.072 g, 4.09 mmo, 69%) as colorless crystals.

4: colorless crystals; M.p. >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (d, *J* = 6.9 Hz, 24H), 1.16 (d, *J* = 6.9 Hz, 24H), 1.32 (s, 12H), 2.79 (sept, *J* = 6.9 Hz, 8H), 7.02 (d, *J* = 1.2 Hz, 2H), 7.22 (d, *J* = 7.6 Hz, 8H), 7.35 (t, *J* = 7.6 Hz, 4H), 7.48 (d, *J* = 1.6 Hz, 4H), 7.94 (d, *J* = 1.6 Hz, 1H), 8.04 (d, *J* = 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 24.1 (q), 24.4 (q), 24.9 (q), 30.4 (d), 84.0 (s), 122.5 (d), 126.6 (d), 127.9 (d), 129.2 (d), 129.8 (d), 132.8 (d), 139.1 (s), 140.77 (s), 140.83 (s), 121.1 (s), 146.7 (s). Anal. Calcd. for C₅₆H₅₇BO₂: C, 87.03; H, 7.43. Found: C, 87.13; H, 7.72.

Synthesis of BpsCHO 5.

Toluene and H₂O were degassed through bubbling of argon for 1 h prior to use. A mixture of **4** (1.798 g, 1.804 mmol), **5** (0.267 g, 1.01 mmol), Pd(PPh₃)₄ (0.225 g, 0.195 mmol), and Ba(OH)₂•8H₂O (2.842 g, 9.01 mmol) in a mixed solvent of THF (36 mL), THF (4.5 mL), and H₂O (4.5 mL) was stirred at 91 °C for 21 h. After cooling to room temperature, the reaction mixture was passed through a pad of celite, and the solvent was evaporated in vacuo. The crude mixture was purified by silica gel column chromatography

(hexane:CHCl₃ = 4:1) to give BpsCHO 6 (1.633 g, 0886 mmol, 98%) as colorless crystals.

6: colorless crystals; M.p. 275.2-277.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.03 (d, *J* = 6.8 Hz, 48H), 1.10 (d, *J* = 6.8 Hz, 48H), 2.74 (sept, *J* = 6.8 Hz, 16H), 6.99 (t, *J* = 1.6 Hz, 4H), 7.17 (d, *J* = 7.8 Hz, 16H), 7.31 (t, *J* = 7.8 Hz, 8H), 7.44 (d, *J* = 1.6 Hz, 8H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 1.6 Hz, 4H), 7.59 (t, *J* = 8.4 Hz, 1H), 7.86 (t, *J* = 1.6 Hz, 2H), 10.13 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 24.1 (q), 24.3 (q), 30.4 (d), 122.5 (d), 125.5 (d), 126.4 (d), 127.5 (d), 127.9 (d), 130.3 (d), 130.8 (d), 131.8 (d), 133.0 (s), 139.0 (s), 140.1 (s), 140.8 (s), 141.1 (s), 141.5 (s), 144.1 (s), 146.7 (s), 193.6 (d); LRMS (FD) *m/z* 1843 [M⁺]. Anal. Calcd for C₁₃₉H₁₅₈O: C, 90.50; H, 8.63. Found: C, 90.48, H, 8.34.

Synthesis of BpsCH₂OH 7.

To a mixture of LiAlH₄ (101.2 mg, 2.67 mmol) in THF (12 mL) was added a solution of **6** (0.572 g, 0.310 mmol) in THF (8 mL) at 0 °C over 15 min. The reaction mixture was allowed to warm to room temperature and stirred for 3 h, and then 1 M aq. HCl was carefully added at 0 °C. After extraction with CHCl₃, the combined organic layer was dried over MgSO₄, and the solvent was evaporated in vacuo. The crude mixture was recrystallized from hexane/acetonitrile to give **7** (0.544 g, 0.295 mmol, 95%) as colorless crystals.

7: colorless crystals; M.p. >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.03 (d, *J* = 6.8 Hz, 48H), 1.09 (d, *J* = 6.8 Hz, 48H), 2.74 (sept, *J* = 6.8 Hz, 16H), 4.63 (d, *J* = 6.0 Hz, 2H), 6.99 (t, *J* = 1.5 Hz, 4H), 7.17 (d, *J* = 6.8 Hz, 16H), 7.32 (t, *J* = 6.8 Hz, 8H), 7.45 (d, *J* = 1.6 Hz, 8H), 7.71 (d, *J* = 1.6 Hz, 4H), 7.85 (t, *J* = 1.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 24.1 (q), 24.3 (q), 30.4 (d), 122.5 (d), 125.3 (d), 126.4 (d), 127.5 (d), 127.9 (d), 130.0 (d), 130.2 (d), 135.2 (d), 139.0 (s), 140.3 (s), 141.1 (s), 141.6 (s, two singlets are overlapped, judged by HMBC), 142.3(s), 143.2 (s), 146.7 (s); LRMS (FD) *m/z* 1845 [M⁺].

Synthesis of BpsCH₂Br 8.

To a solution of 7 (52.3 mg, 28.3 µmol) in 1,4-dioxane (1.5 mL) was added PBr₃ (7.8 µL, 83 µmol), and

the resulting solution was stirred at 85 °C for 18 h. After the reaction mixture was cooled to room temperature, ice-cooled water was added, and the resulting pale yellow solution was stirred at room temperature until it became colorless. After extraction with $CHCl_3$, the combined organic layer was dried over MgSO₄, and the solvent was evaporated in vacuo. The crude mixture was recrystallized from hexane to give **8** (44.0 mg, 23.1 µmol, 81%) as colorless crystals.

8: colorless crystals; M.p. >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.04 (d, *J* = 6.8 Hz, 48H), 1.09 (d, *J* = 6.8 Hz, 48H), 2.75 (sept, *J* = 6.8 Hz, 16H), 4.38 (s, 2H), 7.00 (t, *J* = 1.6 Hz, 4H), 7.18 (d, *J* = 8.0 Hz, 16H), 7.32 (t, *J* = 7.6 Hz, 8H), 7.30-7.45 (m, 11H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.50 (d, *J* = 1.6 Hz, 8H), 7.77 (d, *J* = 1.6 Hz, 4H), 7.89 (t, *J* = 1.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 24.1 (q), 24.3 (q), 30.3 (d), 67.1 (t), 122.5 (d), 125.5 (d), 126.4 (d), 127.3 (d), 127.9 (d), 128.2 (d), 130.03 (d), 130.2 (d), 132.9 (s), 139.0 (s), 140.2 (s), 141.0 (s), 141.3 (s), 141.6 (s), 143.5 (s), 146.7 (s); LRMS (FD) *m/z* 1907 [M⁺].

Synthesis of BpsCH₂SeCN 9.

To a mixture of potassium selenocyanate (145.8 mg, 1.03 mmol) in THF (4 mL) was added a solution of **8** (574.6 mg, 0.301 mmol) in THF (4 mL) at 0 °C over 10 min. The reaction mixture was allowed to warm to room temperature and stirred for 3 h. After addition of water, the mixture was extracted with toluene. The organic layer was washed with brine and dried over MgSO₄. After evaporation of solvent in vacuo, the crude mixture was recrystallized from hexane to give **9** (518.7 mg, 0.268 mmol, 89%) as colorless crystals.

9: colorless crystals; M.p. >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.03 (d, *J* = 6.8 Hz, 48H), 1.09 (d, *J* = 6.8 Hz, 48H), 2.75 (sept, *J* = 6.8 Hz, 16H), 4.37 (s, 2H), 7.00 (t, *J* = 1.6 Hz, 4H), 7.17 (d, *J* = 7.6 Hz, 16H), 7.32 (t, *J* = 7.6 Hz, 8H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.37 (d, *J* = 7.2 Hz, 2H), 7.45 (d, *J* = 1.6 Hz, 8H), 7.58 (d, *J* = 1.6 Hz, 4H), 7.89 (t, *J* = 1.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 24.2 (q), 24.3 (q), 30.4 (d), 77.2 (t), 100.8 (s), 122.5 (d), 126.0 (d), 126.4 (d), 127.0 (d), 127.9 (d), 128.3 (d), 130.1 (d), 130.2 (s), 130.3 (d), 138.9 (s), 140.1 (s), 141.1 (s), 141.2 (s), 141.9 (s), 143.5 (s), 146.7 (s); ⁷⁷Se NMR (95 MHz, CDCl₃) δ 244; IR (KBr) 2152 cm⁻¹ (*v*(CN)); LRMS (FD) *m/z* 1934 [M⁺].

Synthesis of BpsCH₂SeH 10.

The following reaction and workup were performed under argon atmosphere. A solution of **9** (58.7 mg, 30.3 μ mol) in THF (2 mL) was degassed through three freeze-pump-thaw cycles, and the flask was flushed with argon. To a solution of NaBH₄ (3.3 mg, 87 μ mol) in MeOH (2 mL), which was degassed through three freeze-pump-thaw cycles, was added the degassed solution of **9** at -3 °C over 5 min. After the reaction mixture was stirred at room temperature for 2 h, degassed water (0.5 mL) was added. Extraction was performed by using CHCl₃ that was degassed through bubbling of argon and then pre-cooled at 0 °C. The combined organic layer was dried over MgSO₄, and the solvent was evaporated in vacuo. The crude mixture was recrystallized from hexane to give **10** (48.7 mg, 25.5 μ mol, 84%) as colorless crystals.

10: colorless crystals; M.p. 293.8-296.0 °C (dec); ¹H NMR (400 MHz, CDCl₃) δ –0.13 (t, *J* = 6.4 Hz, 1H), 1.03 (d, *J* = 6.8 Hz, 48H), 1.09 (d, *J* = 6.8 Hz, 48H), 2.76 (sept, *J* = 6.8 Hz, 16H), 3.74 (d, *J* = 6.4 Hz, 2H), 7.00 (t, *J* = 1.4 Hz, 4H), 7.17 (d, *J* = 7.3 Hz, 16H), 7.29-7.35 (m, 11H), 7.48 (d, *J* = 1.4 Hz, 8H), 7.69 (d, *J* = 1.4 Hz, 4H), 7.88 (t, *J* = 1.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 16.9 (t), 24.2 (q), 24.4 (q), 30.5 (d), 122.6 (d), 125.2 (d), 126.6 (d), 126.8 (d), 127.3 (d), 128.0 (d), 130.0 (d), 130.3 (d), 136.5 (s), 139.1 (s), 140.2 (s), 141.1 (s), 141.5 (s), 142.2 (s), 142.5 (s), 146.8 (s); ⁷⁷Se NMR (95 MHz, CDCl₃) δ 95; LRMS (FD) *m/z* 1909 [M⁺].

Synthesis of BpsCH₂SeOH 3.

A stock solution of H_2O_2 (30%, 30 µL, 0.26 mmol) in THF (1 mL) and that of NaOH (94.3 mg, 2.36 mmol) in H_2O (8.0 mL) were prepared prior to the reaction. To a solution of **10** (69.0 mg, 36.1 µmol) in THF (2 mL) were added 0.12 mL of the stock solution of NaOH (36 µmol) and 125 µL of that of H_2O_2 (36 µmol) at 0 °C, and the reaction mixture was stirred for 2 h at 0 °C. Then, the solvent was evaporated in vacuo, and NMR measurement of the crude mixture in C₆D₆ showed that selenenic acid **3** was formed in 99% yield. Selenenic acid **3** can also prepared from oxidation of **10** with NaBO₃. To a solution of **10** (16.9 mg, 8.9 µmol) was added an aqueous solution of NaBO₃ (0.18 M, 106 µL, 19 µmol) at -2 °C. The solution was

stirred at the same temperature at the same temperature for 30 min and then at room temperature for 1 h. After treatment with 3% aq. NaHSO₃, the mixture was extracted with CHCl₃ under an argon atmosphere. The combined organic layer was dried over MgSO₄ and evaporated in vacuo. ¹H NMR measurement of the crude mixture in C_6D_6 showed that **3** was formed quantitatively.

3: colorless crystals; M.p. 250.0-251.5 °C; ¹H NMR (400 MHz, C₆D₆) δ 1.07 (d, *J* = 6.8 Hz, 48H), 1.14 (d, *J* = 6.8 Hz, 48H), 2.03 (s, 1H), 2.99 (sept, *J* = 6.9 Hz, 16H), 4.18 (s, 2H), 6.91-7.02 (A₂B pattern, 3H), 7.10 (t, *J* = 1.6 Hz, 4H), 7.20 (d, *J* = 7.6 Hz, 16H), 7.34 (t, *J* = 7.6 Hz, 8H), 7.67 (d, *J* = 1.6 Hz, 8H), 7.77 (d, *J* = 1.6 Hz, 4H), 8.06 (d, *J* = 1.6 Hz, 2H); ¹³C NMR (125 MHz, C₆D₆) δ 24.4 (q), 24.6 (d), 30.8 (d), 35.5 (t), 122.0 (d), 126.5 (d), 127.2 (d), 128.4 (d), 128.7 (d), 130.1 (d), 130.9 (d), 132.8 (d), 139.4 (s), 141.6 (s), 141.9 (s), 142.1 (s), 142.3 (s), 142.8 (s), 143.1 (s), 146.9 (s); ⁷⁷Se NMR (95 MHz, C₆D₆) δ 1243; IR (CHCl₃) *v* 3511 cm⁻¹ (OH). Anal. Calcd. for C₁₃₉H₁₆₀OSe C, 86.69; H, 8.37. Found: C, 86.43; H, 8.43.

Reaction of 3 with dimedone (1).

To **3** (15.0 mg, 7.8 µmol) in an NMR tube with a J-young valve was added a solution of **1** (5.5 mg, 39 µmol) in C₆D₆ (0.6 mL) at room temperature, and the tube was carefully sealed. In the ¹H NMR measurement after 5 min, selenide **11** was formed quantitatively. After extraction with CHCl₃, the combined organic layer was dried over MgSO₄, and the solvent was evaporated in vacuo. The crude mixture was purified by PTLC (hexane:CHCl₃ = 2:1) to afford **11** (8.0 mg, 3.9 µmol, 50%) as colorless crystals **11**: colorless crystals; M.p. 225.0-228.0 °C; ¹H NMR (400 MHz, C₆D₆) δ 0.46 (s, 6H), 1.06 (d, *J* =6.8 Hz, 48H), 1.14 (d, *J* = 6.8 Hz, 48), 1.63 (s, 2H), 1.69 (s, 2H), 3.02 (sept, *J* = 6.8 Hz, 16H), 3.81 (s, 2H), 6.80 (s, 1H), 6.92-6.99 (A₂B pattern, 3H), 7.10 (t, *J* = 1.4 Hz, 4H), 7.18 (d, *J* = 7.2 Hz, 16H), 7.32 (t, *J* = 7.2 Hz, 8H), 7.81 (d, *J* = 1.4 Hz, 8H), 8.01 (d, *J* = 1.4 Hz, 4H), 8.16 (t, *J* = 1.4 Hz, 2H); ¹³C NMR (100 MHz, C₆D₆) δ 24.5 (q), 24.6 (q), 27.8 (q), 29.0 (s), 30.8 (d), 41.2 (t), 50.3 (t), 106.3 (s), 122.9 (d), 126.2 (d), 127.1 (d), 128.5 (d), 128.6 (d), 130.6 (d), 130.9 (d), 132.0 (d), 139.6 (s), 141.8 (s), 142.4 (s), 142.66 (s), 142.74 (s), 143.8 (s), 147.0 (s), 174.6 (s), 190.6 (s); ⁷⁷Se NMR (95 MHz, C₆D₆) δ 79.

Reaction of 3 with acetylacetone (12).

To a solution of **3** (169 mg, 88.0 μ mol) in THF (6.6 mL) was added **12** (45 μ L, 0.44 μ mol) at room temperature. After the reaction mixture was allowed to react for 8 min, the solvent was evacuated in vacuo to afford a mixture of **13a** and **13b** (**13a**:**13b** = 86:14, estimated by ¹H NMR). The crude mixture was purified by silica gel column chromatography (hexane:CHCl₃ = 3:1), and subsequent reprecipitation from hexane afforded a mixture of **13a** and **13b** (110 mg, 54.7 μ mol, 63%; **13a**:**13b** = 93:7, estimated by ¹H NMR).

13a : ¹H NMR (500 MHz, CDCl₃) δ 1.02 (d, *J* = 6.9 Hz, 48H), 1.09 (d, *J* = 6.9 Hz, 48H), 1.66 (s, 6H), 2.73 (sept, *J* = 6.9 Hz, 16H), 3.89 (s, 2H), 3.84 (s, 2H), 6.99 (t, *J* = 1.4 Hz, 3H), 7.17 (d, *J* = 7.8 Hz, 16H), 7.25-7.33 (m, 11H), 7.42 (d, *J* = 1.7 Hz, 8H), 7.62 (d, *J* = 1.7 Hz, 4H), 7.78 (t, *J* = 1.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 24.39 (q), 24.54 (q), 25.39 (q), 28.72 (t), 30.64 (d), 99.93 (s), 125.54 (d), 126.94 (d), 127.67 (d), 128.20 (d), 130.36 (d), 130.43 (d), 132.67 (s), 139.18 (s), 140.67 (s), 141.36 (s), 141.83 (s), 142.71 (s), 143.21 (s), 197.16 (s); ⁷⁷Se NMR (95 MHz, CDCl₃) δ 247.

13b : ¹H NMR (500 MHz, CDCl₃) δ 1.03 (d, *J* = 6.6 Hz, 48H), 1.08 (d, *J* = 6.8 Hz, 48H), 1.62 (s, 6H), 2.73 (sept, *J* = 6.9 Hz, 16H), 3.64 (s, 2H), 3.84 (s, 2H), 6.99 (t, *J* = 1.4 Hz, 3H), 7.17 (d, *J* = 7.8 Hz, 16H), 7.27-7.33 (m, 11H), 7.42 (d, *J* = 1.5 Hz, 8H), 7.59 (d, *J* = 1.5 Hz, 4H), 7.80 (t, *J* = 1.5 Hz, 2H); ⁷⁷Se NMR (95 MHz, CDCl₃) δ 329.

The following data were obtained for a mixture of **13a** and **13b** (**13a**:**13b** = 92:8); M.p. >300 °C; LRMS (FD) m/z 2007 [M⁺]; Anal. Calcd. for C₁₄₄H₁₆₆O₂Se C, 86.14; H, 8.33. Found: C, 86.11; H, 8.39.

Reaction of 3 with cyclooctyne (14).

A stock solution of cyclooctyne (14) (5.4 μ L, 43 μ mol) in C₆D₆ (0.40 mL) was prepared. To a solution of 2 (14.0 mg, 7.3 μ mol) in C₆D₆ (0.40 mL) was added a part of the stock solution of 14 (0.20 mL, 22 μ mol as 14) at room temperature. In the ¹H NMR measurement after 5 min, it was found that 15 was formed quantitatively. The reaction mixture was extracted with CHCl₃, and the combined organic layer was dried over MgSO₄. After evaporation of the solvent in vacuo, the resulting crude mixture was purified by PTLC (hexane:CHCl₃ = 2:1) to afford 15 (9.5 mg, 4.7 μ mol, 65%) as colorless solids.

15: colorless solids; M.p. 227.0-229.0 °C; ¹H NMR (400 MHz, C₆D₆) δ 1.07 (d, J = 6.8 Hz, 48H), 1.12 (d, J = 6.8 Hz, 48H), 1.10-1.39 (m, 8H), 1.44-1.55 (m, 1H), 1.66-1.91 (m, 3H), 2.99 (sept, J = 6.8 Hz, 16H), 3.71 (d, J = 12.0 Hz, 1H), 3.83 (d, J = 12.0 Hz, 1H), 5.88 (t, J = 8.0 Hz, 1H), 6.92-7.04 (A₂B pattern, 3H), 7.10 (brs, 4H), 7.18 (d, J = 7.6 Hz, 16H), 7.31 (t, J = 7.6 Hz, 8H), 7.65-8.01 (br, 12H), 8.17 (t, J = 1.6 Hz, 2H); ¹³C NMR (125 MHz, C₆D₆) δ 24.1 (q), 24.3 (q), 24.7 (t), 25.3 (t), 25.8 (t), 26.3 (t), 28.1 (t), 29.4 (t), 30.6 (d), 51.6 (t), 122.6 (d), 125.5 (d), 126.9 (d), 127.1 (d), 128.2 (d), 129.2 (d), 130.2 (d), 130.9 (d), 132.5 (d), 139.2

(s), 141.1 (s), 141.6 (s), 142.1 (s), 142.5 (s), 142.9 (s), 143.5 (s), 146.6 (s), 146.7 (s); ⁷⁷Se NMR (95 MHz, C₆D₆) δ 920; IR (KBr) ν 1055 cm⁻¹ (Se=O).

Reactions of 3 with acetamide (16).

(i) Under acidic conditions

The reaction was carried out in an NMR tube with a J-young valve. To a solution of **3** (13.5 mg, 7.0 μ mol) in C₆D₆ (0.6 mL) was added acetamide **16** (2.2 mg, 37 μ mol), benzoic acid (4.4 mg, 36 μ mol), and bis(trimethylsilyl)methane (1 drop, internal standard). The tube was carefully sealed, and the reaction at room temperature was monitored by ¹H NMR spectroscopy. After 25 h, *N*-selenoamide **17** was formed in 85% yield, which was confirmed by ¹H NMR measurement. The reaction mixture was opened in air and extracted with chloroform. The combined organic layer was dried over MgSO₄, and the solvent was evaporated in vacuo. The resulting crude mixture was purified by PTLC (hexane:CHCl₃ = 1:1) to give **17** (5.0 mg, 2.5 μ mol, 36%).

(ii) Under basic conditions

The reaction was carried out in an NMR tube with a J-young valve at room temperature. To a solution of **3** (22.8 mg, 11.9 µmol) in C₆D₆ (0.6 mL) was added acetamide **16** (2.7 mg, 46 µmol), triethylamine (4.7 µL, 47 µmol), and bis(trimethylsilyl)methane (1 drop, internal standard). The tube was carefully sealed, and the reaction at room temperature was monitored by ¹H NMR spectroscopy. After 6 h, **17** was formed in 92% yield, which was confirmed by ¹H NMR measurement. The reaction mixture was opened in air and extracted with chloroform. The combined organic layer was dried over MgSO₄, and the solvent was evaporated in vacuo. The crude mixture was purified by PTLC (hexane:CHCl₃ = 1:1) to give **17** (12.4 mg, 6.3 µmol, 53%). **17**: colorless solids; Mp 227.0-229.0 °C; ¹H NMR (500 MHz, CDCl₃, 320 K) δ 1.05 (d, *J* = 6.8 Hz, 48H), 1.48 (s, 3H, CH₃C(=O)NH), 2.77 (sept, *J* = 6.8 Hz, 16H), 4.26 (brs, 2H, CH₂Se), 5.27 (s, 1H, NH), 7.01(t, *J* = 1.2 Hz, 4H), 7.18 (d, *J* = 7.8 Hz, 16H), 7.29-7.37 (m, 10H), 7.47 (d, *J* = 1.2 Hz),

7.62 (br, 4H), 7.88 (br, 2H); ¹³C NMR (500 MHz, CDCl₃, 320 K) δ 21.2 (br, q), 24.2 (q), 24.3 (q), 30.5 (d),
34.8 (br, t), 122.6 (d, one doublet overlapped), 125.4 (br, d), 126.5 (d), 127.4 (d), 128.0 (d), 130.0 (d), 130.5 (d), 139.0 (s, one singlet overlapped), 140.2 (s), 141.3 (s), 141.7 (s), 142.6 (br, s), 146.8 (s), 170.6 (br, s, C=O); ⁷⁷Se NMR (95 MHz, CDCl₃, 320 K) δ 690.

Reaction of 3 with benzylamine.

The reaction was carried out in an NMR tube with a J-young valve at room temperature. To a solution of **3** (8.2 mg, 4.3 μ mol) in C₆D₆ (0.6 mL) was added benzylamine (6.0 μ L, 55 μ mol) and bis(trimethylsilyl)methane (1 drop, internal standard). The tube was carefully sealed, and the reaction was monitored by ¹H NMR spectroscopy. After 30 min, selenenamide **18** was formed quantitatively, which was confirmed by ¹H NMR measurement. Purification by PTLC was unsuccessful due to complete decomposition of **18**. Isolation of **18** was accomplished in another experiment through precipitation from CHCl₃/CH₃CN, where **18** (51.5 mg, 25.5 μ mol, 68%) was obtained from **3** (72.6 mg, 37.7 μ mol) and benzylamine (21 μ L, 0.19 mmol).

18: white crystals; Mp 226.5-228.0 °C; ¹H NMR (400 MHz, C₆D₆) δ 1.02 (d, *J* = 6.8 Hz, 48H), 1.07 (d, *J* = 6.8 Hz, 48H), 2.94 (sept, *J* = 6.8 Hz, 16H), 3.50 (s, 2H), 3.66 (s, 2H), 6.73-6.75 (m, 3H), 6.80-6.92 (m, 5H), 7.04 (t, *J* = 1.5 Hz, 4H), 7.13 (d, *J* = 7.6 Hz, 16H), 7.28 (t, *J* = 7.6 Hz, 8H), 7.63 (d, *J* = 1.5 Hz, 8H), 7.82 (d, *J* = 1.6 Hz, 4H), 8.00 (t, *J* = 1.6 Hz); ¹³C NMR (100 MHz, C₆D₆) δ 24.1 (q), 24.3 (q), 30.6 (d), 58.8 (t), 86.7 (t), 122.7 (d), 125.4 (d), 126.3 (s), 126.9 (d), 127.8 (d), 128.0 (d), 128.2 (d), 128.3 (d), 128.5 (d), 129.8 (d), 130.7 (d), 134.0 (d), 139.2 (s), 140.9 (s), 141.3 (s), 141.7 (s), 141.9 (s), 142.8 (s), 142.9 (s), 146.7 (s); ⁷⁷Se NMR (95 MHz, C₆D₆) δ 709.

2. NMR data

References

- 1 Goto, K.; Yamamoto, G.; Tan, B.; Okazaki, R. *Tetrahedron Lett.* **2001**, *42*, 4875-4877.
- 2 Kehlbeck, J. D.; Dimise, E. J.; Sparks, S. M.; Ferrara, S.; Tanski, J. M.; Anderson, C. M. *Synthesis* **2007**, 1979-1983.
- 3 Lulinski, S.; Serwatowski, J. J. Org. Chem. 2003, 68, 5384-5387.
- 4 Garcia-Hartjes, J.; Dommerholt, J.; Wennekes, T.; van Delft, F. L.; Zuilhof, H. Eur. J. Org. Chem. 2013, 3712-3720.