Supporting Information for:

''Model Study on Trapping of Protein Selenenic Acids by Utilizing a Stable Synthetic Congener"

Shohei Sase, Ryutaro Kimura, Ryosuke Masuda, and Kei Goto*
Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

Contents

1. Experimental section 2
2. NMR data 11
3. References 23

1. Experimental Section

General experimental methods: Unless otherwise stated, all operations were performed by using high-vacuum and standard Schlenk techniques under an argon atmosphere. THF (anhydrous) was purchased from Kanto Chemical and passed through a Kayama Oxygen solvent purification system prior to use. Other solvents were purchased from commercial sources and used as received. $\mathbf{S 1}^{1}, \mathbf{S 2},{ }^{2} \mathbf{5}^{3}$, and cyclooctyne $(\mathbf{1 4})^{4}$ were prepared according to the literature procedure. Other chemicals were purchased from commercial sources and used as received. Silica gel column chromatography was performed using Kanto silica gel N60 or Merck silica gel 60. Preparative thin layer chromatography (PTLC) was performed using Merck silica gel $60 \mathrm{PF}_{254} .{ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL ECS-400, a JEOL ECX-500, or a JEOL ECZ-500, and the chemical shifts of ${ }^{1} \mathrm{H}$ are referenced to the residual proton signal of $\mathrm{CDCl}_{3}(\delta 7.25)$ or $\mathrm{C}_{6} \mathrm{D}_{6}(\delta 7.15) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL ECS-400, a JEOL ECX-500, or a JEOL ECZ-500, and the chemical shifts of ${ }^{13} \mathrm{C}$ are referenced to the signal of $\mathrm{CDCl}_{3}(\delta 77.0)$ or $\mathrm{C}_{6} \mathrm{D}_{6}(\delta 128.0)$. ${ }^{77} \mathrm{Se}$ NMR spectra were recorded on a JEOL ECX-500, and the chemical shifts of ${ }^{77} \mathrm{Se}$ are referenced to the diphenyl diselenide (δ 480) as external standard. All spectra were assigned with the aid of DEPT, COSY, HMQC, and HMBC NMR experiments. IR spectra were recorded on a JASCO FT/IR-4100 by utilizing a KBr disk. Mass spectra were measured on a JEOL JMS-T100GCv "AccuTOF GCv" using a field desorption probe. Melting points were measured with a Yanaco MP-S3 and are uncorrected.

Synthesis of quinquephenyl bromide S3.

To a Grignard reagent prepared by the reaction of 2-bromo-1,3-diisopropylbenzene ($\mathbf{S 1}$) (12.97 g, 27.2 mmol) and magnesium turnings ($0.9476 \mathrm{~g}, 39.0 \mathrm{mmol}$) in THF (50 mL) was added a solution of $1,3,5$-tribromo-2-iodobenzene ($\mathbf{S} 2)(4.179 \mathrm{~g}, 9.48 \mathrm{mmol})$ over 30 min at $75^{\circ} \mathrm{C}$. The reaction mixture was stirred at $75^{\circ} \mathrm{C}$ overnight and then treated with 1 M HCl at $0^{\circ} \mathrm{C}$. After extraction with ether, the combined organic layer was dried over MgSO_{4} and evaporated in vacuo. To the resulting oily mixture was added EtOH to precipitate white solids, which was collected by filtration. It was purified by silica gel column chromatography (hexane: $\mathrm{CHCl}_{3}=7: 1$) to give quinquephenyl bromide $\mathbf{S 3}(6.923 \mathrm{~g}, 7.29 \mathrm{mmol}, 80 \%)$ as colorless crystals.

S3: colorless crystals; M.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 24 \mathrm{H}), 1.14(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 24 \mathrm{H}), 2.73(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.03(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 7.32(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 4 \mathrm{H}), 7.39(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.69(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 24.2$ (q), 24.3 (q), 30.4 (d), 122.6 (d), 123.3 (s$), 125.2$ (d), 126.5 (d), 128.1 (d), 129.5 (d), 130.6 (d), 138.8 (s), 139.5 (s), 141.3 (s), 143.7 (s), 146.7 (s). Anal. Calcd. for $\mathrm{C}_{66} \mathrm{H}_{77} \mathrm{Br}: \mathrm{C}, 83.42$; H, 8.17. Found: C, 83.69; H, 8.47.

Synthesis of arylboronic acid pinacol ester 4.

To a solution of $\mathbf{S 3}(6.923 \mathrm{~g}, 7.29 \mathrm{mmol})$ in THF (30 mL) was added $n-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, 5.2 mL , 7.8 mmol) at $-78{ }^{\circ} \mathrm{C}$ over 30 min . After the reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$, trimethyl borate ($0.86 \mathrm{~mL}, 7.7 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$, and it was allowed to warm to room temperature and stirred overnight. The reaction mixture was treated with 1 M HCl and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was dried over MgSO_{4}, and the solvent was evaporated in vacuo. To the resulting residue was added THF (15 mL) and pinacol ($0.860 \mathrm{~g}, 7.28 \mathrm{mmol}$), and it was stirred at $78{ }^{\circ} \mathrm{C}$ overnight. After evaporation of the solvent, the crude mixture was purified by silica gel column chromatography (hexane: $\mathrm{CHCl}_{3}=7: 1$) to give $\mathbf{4}(4.072 \mathrm{~g}, 4.09 \mathrm{mmo}, 69 \%)$ as colorless crystals.
4: colorless crystals; M.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{\mathrm{H}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 24 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 24 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H}), 2.79(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 8 \mathrm{H}), 7.02(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.35$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.1$ (q), 24.4 (q), 24.9 (q), 30.4 (d), 84.0 (s), 122.5 (d), 126.6 (d), 127.9 (d), 129.2 (d), 129.8 (d), 132.8 (d), 139.1 (s), 140.77 (s), 140.83 (s), 121.1 (s), 146.7 (s). Anal. Calcd. for $\mathrm{C}_{56} \mathrm{H}_{57} \mathrm{BO}_{2}$: C, 87.03; H, 7.43. Found: C, 87.13; H, 7.72.

Synthesis of BpsCHO 5.

Toluene and $\mathrm{H}_{2} \mathrm{O}$ were degassed through bubbling of argon for 1 h prior to use. A mixture of $4(1.798 \mathrm{~g}$, $1.804 \mathrm{mmol}), 5(0.267 \mathrm{~g}, 1.01 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.225 \mathrm{~g}, 0.195 \mathrm{mmol})$, and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(2.842 \mathrm{~g}, 9.01$ mmol) in a mixed solvent of THF (36 mL), THF (4.5 mL), and $\mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{~mL})$ was stirred at $91{ }^{\circ} \mathrm{C}$ for 21 h . After cooling to room temperature, the reaction mixture was passed through a pad of celite, and the solvent was evaporated in vacuo. The crude mixture was purified by silica gel column chromatography
(hexane: $\mathrm{CHCl}_{3}=4: 1$) to give BpsCHO $6(1.633 \mathrm{~g}, 0886 \mathrm{mmol}, 98 \%)$ as colorless crystals.
6: colorless crystals; M.p. 275.2-277.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.10(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 2.74(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 16 \mathrm{H}), 6.99(\mathrm{t}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 16 \mathrm{H}), 7.31(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.44(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.59(\mathrm{t}, J=8.4 \mathrm{~Hz}$,
 (d), 125.5 (d), 126.4 (d), 127.5 (d), 127.9 (d), 130.3 (d), 130.8 (d), 131.8 (d), 133.0 (s), 139.0 (s), 140.1 (s), 140.8 (s), 141.1 (s), 141.5 (s), 144.1 (s), 146.7 (s), 193.6 (d); LRMS (FD) $m / z 1843$ [M ${ }^{+}$]. Anal. Calcd for $\mathrm{C}_{139} \mathrm{H}_{158} \mathrm{O}: \mathrm{C}, 90.50 ; \mathrm{H}, 8.63$. Found: C, $90.48, \mathrm{H}, 8.34$.

Synthesis of $\mathrm{BpsCH}_{2} \mathbf{O H} 7$.

To a mixture of $\mathrm{LiAlH}_{4}(101.2 \mathrm{mg}, 2.67 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ was added a solution of $6(0.572 \mathrm{~g}$, $0.310 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ over 15 min . The reaction mixture was allowed to warm to room temperature and stirred for 3 h , and then 1 M aq. HCl was carefully added at $0{ }^{\circ} \mathrm{C}$. After extraction with CHCl_{3}, the combined organic layer was dried over MgSO_{4}, and the solvent was evaporated in vacuo. The crude mixture was recrystallized from hexane/acetonitrile to give $7(0.544 \mathrm{~g}, 0.295 \mathrm{mmol}, 95 \%)$ as colorless crystals.

7: colorless crystals; M.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 48 \mathrm{H}), 2.74(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 16 \mathrm{H}), 4.63(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $16 \mathrm{H}), 7.32(\mathrm{t}, J=6.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.45(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.71(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.85(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.1$ (q), 24.3 (q), 30.4 (d), 122.5 (d), 125.3 (d), 126.4 (d), 127.5 (d), 127.9 (d), 130.0 (d), 130.2 (d), 135.2 (d), 139.0 (s), 140.3 (s), 141.1 (s), 141.6 (s , two singlets are overlapped, judged by HMBC), 142.3(s), 143.2 (s), 146.7 (s); LRMS (FD) $m / z 1845\left[\mathrm{M}^{+}\right]$.

Synthesis of $\mathrm{BpsCH}_{2} \mathrm{Br} 8$.

To a solution of $7(52.3 \mathrm{mg}, 28.3 \mu \mathrm{~mol})$ in 1,4 -dioxane $(1.5 \mathrm{~mL})$ was added $\mathrm{PBr}_{3}(7.8 \mu \mathrm{~L}, 83 \mu \mathrm{~mol})$, and
the resulting solution was stirred at $85{ }^{\circ} \mathrm{C}$ for 18 h . After the reaction mixture was cooled to room temperature, ice-cooled water was added, and the resulting pale yellow solution was stirred at room temperature until it became colorless. After extraction with CHCl_{3}, the combined organic layer was dried over MgSO_{4}, and the solvent was evaporated in vacuo. The crude mixture was recrystallized from hexane to give $8(44.0 \mathrm{mg}, 23.1 \mu \mathrm{~mol}, 81 \%)$ as colorless crystals.

8: colorless crystals; M.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 48 \mathrm{H}), 2.75(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 16 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 16 \mathrm{H}), 7.32$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 11 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.77(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $4 \mathrm{H}), 7.89(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.1$ (q), 24.3 (q), 30.3 (d), 67.1 (t), 122.5 (d), 125.5 (d), 126.4 (d), 127.3 (d), 127.9 (d), 128.2 (d), 130.03 (d), 130.2 (d), 132.9 (s), 139.0 (s), 140.2 (s), $141.0(\mathrm{~s}), 141.3(\mathrm{~s}), 141.6(\mathrm{~s}), 143.5(\mathrm{~s}), 146.7(\mathrm{~s}) ;$ LRMS (FD) m/z $1907\left[\mathrm{M}^{+}\right]$.

Synthesis of $\mathrm{BpsCH}_{2} \mathbf{S e C N} 9$.

To a mixture of potassium selenocyanate $(145.8 \mathrm{mg}, 1.03 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ was added a solution of $\mathbf{8}(574.6 \mathrm{mg}, 0.301 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ over 10 min . The reaction mixture was allowed to warm to room temperature and stirred for 3 h . After addition of water, the mixture was extracted with toluene. The organic layer was washed with brine and dried over MgSO_{4}. After evaporation of solvent in vacuo, the crude mixture was recrystallized from hexane to give $9(518.7 \mathrm{mg}, 0.268 \mathrm{mmol}, 89 \%)$ as colorless crystals.

9: colorless crystals; M.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 48 \mathrm{H}), 2.75(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 16 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 16 \mathrm{H}), 7.32$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.58(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.89(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.2$ (q), 24.3 (q), 30.4 (d), 77.2 (t), 100.8 (s), 122.5 (d), 126.0 (d), 126.4 (d), 127.0 (d), 127.9 (d), 128.3 (d), 130.1 (d), 130.2 (s$), 130.3$ (d), 138.9 (s), 140.1 (s), 141.1 (s), 141.2 (s), 141.9 (s), 143.5 (s), 146.7 (s); ${ }^{77} \mathrm{Se}$ NMR ($95 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 244$; IR (KBr) $2152 \mathrm{~cm}^{-1}(v(\mathrm{CN})) ;$ LRMS (FD) $m / z 1934\left[\mathrm{M}^{+}\right]$.

Synthesis of $\mathbf{B p s C H}_{2} \mathrm{SeH} 10$.

The following reaction and workup were performed under argon atmosphere. A solution of $9(58.7 \mathrm{mg}$, $30.3 \mu \mathrm{~mol})$ in THF (2 mL) was degassed through three freeze-pump-thaw cycles, and the flask was flushed with argon. To a solution of $\mathrm{NaBH}_{4}(3.3 \mathrm{mg}, 87 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, which was degassed through three freeze-pump-thaw cycles, was added the degassed solution of 9 at $-3{ }^{\circ} \mathrm{C}$ over 5 min . After the reaction mixture was stirred at room temperature for 2 h , degassed water (0.5 mL) was added. Extraction was performed by using CHCl_{3} that was degassed through bubbling of argon and then pre-cooled at $0{ }^{\circ} \mathrm{C}$. The combined organic layer was dried over MgSO_{4}, and the solvent was evaporated in vacuo. The crude mixture was recrystallized from hexane to give $10(48.7 \mathrm{mg}, 25.5 \mu \mathrm{~mol}, 84 \%)$ as colorless crystals.

10: colorless crystals; M.p. $293.8-296.0{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.13(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 2.76(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 16 \mathrm{H}), 3.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.00(\mathrm{t}, J=1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 16 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 11 \mathrm{H}), 7.48(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 8 \mathrm{H}), 7.69(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.88(\mathrm{t}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.9$ (t), 24.2 (q), 24.4 (q), 30.5 (d), 122.6 (d), 125.2 (d), 126.6 (d), 126.8 (d), 127.3 (d), 128.0 (d), 130.0 (d), 130.3 (d), 136.5 (s), 139.1 (s$), 140.2$ (s), 141.1 (s), 141.5 (s), 142.2 (s), 142.5 (s), $146.8(\mathrm{~s}) ;{ }^{77} \mathrm{Se}$ NMR ($\left.95 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 95 ;$ LRMS (FD) m / z 1909 [M^{+}].

Synthesis of $\mathrm{BpsCH}_{2} \mathrm{SeOH} 3$.

A stock solution of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 30 \mu \mathrm{~L}, 0.26 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ and that of $\mathrm{NaOH}(94.3 \mathrm{mg}, 2.36$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(8.0 \mathrm{~mL})$ were prepared prior to the reaction. To a solution of $\mathbf{1 0}(69.0 \mathrm{mg}, 36.1 \mu \mathrm{~mol})$ in THF (2 mL) were added 0.12 mL of the stock solution of $\mathrm{NaOH}(36 \mu \mathrm{~mol})$ and $125 \mu \mathrm{~L}$ of that of $\mathrm{H}_{2} \mathrm{O}_{2}(36 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. Then, the solvent was evaporated in vacuo, and NMR measurement of the crude mixture in $\mathrm{C}_{6} \mathrm{D}_{6}$ showed that selenenic acid 3 was formed in 99% yield. Selenenic acid $\mathbf{3}$ can also prepared from oxidation of $\mathbf{1 0}$ with NaBO_{3}. To a solution of $\mathbf{1 0}(16.9 \mathrm{mg}, 8.9$ $\mu \mathrm{mol})$ was added an aqueous solution of $\mathrm{NaBO}_{3}(0.18 \mathrm{M}, 106 \mu \mathrm{~L}, 19 \mu \mathrm{~mol})$ at $-2{ }^{\circ} \mathrm{C}$. The solution was
stirred at the same temperature at the same temperature for 30 min and then at room temperature for 1 h . After treatment with 3% aq. NaHSO_{3}, the mixture was extracted with CHCl_{3} under an argon atmosphere. The combined organic layer was dried over MgSO_{4} and evaporated in vacuo. ${ }^{1} \mathrm{H}$ NMR measurement of the crude mixture in $\mathrm{C}_{6} \mathrm{D}_{6}$ showed that $\mathbf{3}$ was formed quantitatively.

3: colorless crystals; M.p. $250.0-251.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.14(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 16 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 6.91-7.02\left(\mathrm{~A}_{2} \mathrm{~B}\right.$ pattern, 3 H$), 7.10(\mathrm{t}$, $J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 16 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.77(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 4 \mathrm{H}), 8.06(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 24.4$ (q), 24.6 (d), 30.8 (d), 35.5 (t), 122.0 (d), 126.5 (d), 127.2 (d), 128.4 (d), 128.7 (d), 130.1 (d), 130.9 (d), 132.8 (d), 139.4 (s), 141.6 (s$), 141.9$ (s), 142.1 (s), 142.3 (s), 142.8 (s), 143.1 (s), 146.9 (); ${ }^{77} \mathrm{Se} \operatorname{NMR}\left(95 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1243$; IR (CHCl_{3}) v 3511 $\mathrm{cm}^{-1}(\mathrm{OH})$. Anal. Calcd. for $\mathrm{C}_{139} \mathrm{H}_{160} \mathrm{OSe} \mathrm{C}, 86.69 ; \mathrm{H}, 8.37$. Found: C, 86.43; H, 8.43.

Reaction of 3 with dimedone (1).

To $\mathbf{3}(15.0 \mathrm{mg}, 7.8 \mu \mathrm{~mol})$ in an NMR tube with a J-young valve was added a solution of $\mathbf{1}(5.5 \mathrm{mg}, 39$ $\mu \mathrm{mol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})$ at room temperature, and the tube was carefully sealed. In the ${ }^{1} \mathrm{H}$ NMR measurement after 5 min , selenide $\mathbf{1 1}$ was formed quantitatively. After extraction with CHCl_{3}, the combined organic layer was dried over MgSO_{4}, and the solvent was evaporated in vacuo. The crude mixture was purified by PTLC (hexane: $\mathrm{CHCl}_{3}=2: 1$) to afford $\mathbf{1 1}(8.0 \mathrm{mg}, 3.9 \mu \mathrm{~mol}, 50 \%)$ as colorless crystals
11: colorless crystals; M.p. $225.0-228.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.46(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $48 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48), 1.63(\mathrm{~s}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 2 \mathrm{H}), 3.02(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 16 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~s}$, $1 \mathrm{H})$, 6.92-6.99 ($\mathrm{A}_{2} \mathrm{~B}$ pattern, 3 H), $7.10(\mathrm{t}, J=1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 16 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H})$, $7.81(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 8 \mathrm{H}), 8.01(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.16(\mathrm{t}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 24.5$ (q), $24.6(\mathrm{q}), 27.8(\mathrm{q}), 29.0(\mathrm{~s}), 30.8(\mathrm{~d}), 41.2(\mathrm{t}), 50.3(\mathrm{t}), 106.3(\mathrm{~s}), 122.9(\mathrm{~d}), 126.2(\mathrm{~d}), 127.1(\mathrm{~d}), 128.5(\mathrm{~d})$, 128.6 (d), 130.6 (d), 130.9 (d), 132.0 (d), 139.6 (s), 141.8 (s), 142.4 (s), 142.66 (s), 142.74 (s), 143.8 (s), 147.0 (s), 174.6 (s), 190.6 (s); ${ }^{77} \mathrm{Se} \operatorname{NMR}\left(95 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 79$.

Reaction of 3 with acetylacetone (12).

To a solution of $\mathbf{3}(169 \mathrm{mg}, 88.0 \mu \mathrm{~mol})$ in THF $(6.6 \mathrm{~mL})$ was added $\mathbf{1 2}(45 \mu \mathrm{~L}, 0.44 \mu \mathrm{~mol})$ at room temperature. After the reaction mixture was allowed to react for 8 min , the solvent was evacuated in vacuo to afford a mixture of $\mathbf{1 3 a}$ and $\mathbf{1 3 b}\left(\mathbf{1 3 a}: \mathbf{1 3 b}=86: 14\right.$, estimated by $\left.{ }^{1} \mathrm{H} N M R\right)$. The crude mixture was purified by silica gel column chromatography (hexane: $\mathrm{CHCl}_{3}=3: 1$), and subsequent reprecipitation from hexane afforded a mixture of $\mathbf{1 3 a}$ and $\mathbf{1 3 b}\left(110 \mathrm{mg}, 54.7 \mu \mathrm{~mol}, 63 \% ; \mathbf{1 3 a}: \mathbf{1 3 b}=93: 7\right.$, estimated by $\left.{ }^{1} \mathrm{H} N \mathrm{NR}\right)$.
13a : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 48 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 48 \mathrm{H}), 1.66(\mathrm{~s}, 6 \mathrm{H}), 2.73$ (sept, $J=6.9 \mathrm{~Hz}, 16 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 16 \mathrm{H})$, $7.25-7.33(\mathrm{~m}, 11 \mathrm{H}), 7.42(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 8 \mathrm{H}), 7.62(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.78(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.39$ (q), 24.54 (q), 25.39 (q), 28.72 (t), 30.64 (d), 99.93 (s$), 125.54$ (d), 126.94 (d), 127.67 (d), 128.20 (d), 130.36 (d), 130.43 (d), 132.67 (s), 139.18 (s), 140.67 (s), 141.36 (s), 141.83 (s), 142.71 (s), 143.21 (s), 197.16 (s); ${ }^{77} \operatorname{Se} \operatorname{NMR}\left(95 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 247$.

13b : ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 48 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}), 2.73$ (sept, $J=6.9 \mathrm{~Hz}, 16 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 16 \mathrm{H})$, 7.27-7.33 (m, 11H), $7.42(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.59(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.80(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{77} \mathrm{Se}$ NMR ($95 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 329$.

The following data were obtained for a mixture of 13a and 13b (13a:13b $=92: 8$); M.p. $>300{ }^{\circ} \mathrm{C}$; LRMS (FD) $m / z 2007\left[\mathrm{M}^{+}\right]$; Anal. Calcd. for $\mathrm{C}_{144} \mathrm{H}_{166} \mathrm{O}_{2} \mathrm{Se} \mathrm{C}, 86.14 ; \mathrm{H}, 8.33$. Found: C, 86.11; H, 8.39.

Reaction of 3 with cyclooctyne (14).

A stock solution of cyclooctyne (14) $(5.4 \mu \mathrm{~L}, 43 \mu \mathrm{~mol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.40 \mathrm{~mL})$ was prepared. To a solution of $2(14.0 \mathrm{mg}, 7.3 \mu \mathrm{~mol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.40 \mathrm{~mL})$ was added a part of the stock solution of $\mathbf{1 4}(0.20 \mathrm{~mL}, 22 \mu \mathrm{~mol}$ as 14) at room temperature. In the ${ }^{1} H \mathrm{NMR}$ measurement after 5 min , it was found that $\mathbf{1 5}$ was formed quantitatively. The reaction mixture was extracted with CHCl_{3}, and the combined organic layer was dried over MgSO_{4}. After evaporation of the solvent in vacuo, the resulting crude mixture was purified by PTLC (hexane: $\left.\mathrm{CHCl}_{3}=2: 1\right)$ to afford $\mathbf{1 5}(9.5 \mathrm{mg}, 4.7 \mu \mathrm{~mol}, 65 \%)$ as colorless solids.
15: colorless solids; M.p. 227.0-229.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.12(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.10-1.39(\mathrm{~m}, 8 \mathrm{H}), 1.44-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.91(\mathrm{~m}, 3 \mathrm{H}), 2.99(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 16 \mathrm{H}), 3.71$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-7.04\left(\mathrm{~A}_{2} \mathrm{~B}\right.$ pattern, 3 H$), 7.10$ (brs, 4H), $7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 16 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.65-8.01(\mathrm{br}, 12 \mathrm{H}), 8.17(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 24.1$ (q), 24.3 (q), 24.7 (t), 25.3 (t$), 25.8(\mathrm{t}), 26.3(\mathrm{t}), 28.1(\mathrm{t}), 29.4(\mathrm{t}), 30.6(\mathrm{~d})$, 51.6 (t), 122.6 (d), 125.5 (d), 126.9 (d), 127.1 (d), 128.2 (d), 129.2 (d), 130.2 (d), 130.9 (d), 132.5 (d), 139.2
(s), 141.1 (s), 141.6 (s), 142.1 (s), 142.5 (s), 142.9 (s), 143.5 (s), 146.6 (s), 146.7 (s); ${ }^{77}$ Se NMR (95 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 920$; IR (KBr) $v 1055 \mathrm{~cm}^{-1}(\mathrm{Se}=\mathrm{O})$.

Reactions of 3 with acetamide (16).

(i) Under acidic conditions

The reaction was carried out in an NMR tube with a J-young valve. To a solution of 3 ($13.5 \mathrm{mg}, 7.0$ $\mu \mathrm{mol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})$ was added acetamide $16(2.2 \mathrm{mg}, 37 \mu \mathrm{~mol})$, benzoic acid ($\left.4.4 \mathrm{mg}, 36 \mu \mathrm{~mol}\right)$, and bis(trimethylsilyl)methane (1 drop, internal standard). The tube was carefully sealed, and the reaction at room temperature was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After $25 \mathrm{~h}, \mathrm{~N}$-selenoamide 17 was formed in 85% yield, which was confirmed by ${ }^{1} \mathrm{H}$ NMR measurement. The reaction mixture was opened in air and extracted with chloroform. The combined organic layer was dried over MgSO_{4}, and the solvent was evaporated in vacuo. The resulting crude mixture was purified by PTLC (hexane: $\mathrm{CHCl}_{3}=1: 1$) to give $\mathbf{1 7}$ ($5.0 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 36 \%$).
(ii) Under basic conditions

The reaction was carried out in an NMR tube with a J-young valve at room temperature. To a solution of $3(22.8 \mathrm{mg}, 11.9 \mu \mathrm{~mol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})$ was added acetamide $16(2.7 \mathrm{mg}, 46 \mu \mathrm{~mol})$, triethylamine $(4.7 \mu \mathrm{~L}$, $47 \mu \mathrm{~mol}$), and bis(trimethylsilyl)methane (1 drop, internal standard). The tube was carefully sealed, and the reaction at room temperature was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After $6 \mathrm{~h}, \mathbf{1 7}$ was formed in 92% yield, which was confirmed by ${ }^{1} \mathrm{H}$ NMR measurement. The reaction mixture was opened in air and extracted with chloroform. The combined organic layer was dried over MgSO_{4}, and the solvent was evaporated in vacuo. The crude mixture was purified by PTLC (hexane: $\mathrm{CHCl}_{3}=1: 1$) to give $\mathbf{1 7}(12.4 \mathrm{mg}, 6.3 \mu \mathrm{~mol}, 53 \%)$. 17: colorless solids; Mp 227.0-229.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 320 \mathrm{~K}$) $\delta 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H})$, $1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 2.77(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 16 \mathrm{H}), 4.26\left(\mathrm{brs}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Se}\right)$, $5.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 7.01(\mathrm{t}, J=1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 16 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 10 \mathrm{H}), 7.47(\mathrm{~d}, J=1.2 \mathrm{~Hz})$,
$7.62(\mathrm{br}, 4 \mathrm{H}), 7.88(\mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 320 \mathrm{~K}\right) \delta 21.2(\mathrm{br}, \mathrm{q}), 24.2$ (q), 24.3 (q), 30.5 (d), 34.8 (br, t), 122.6 (d, one doublet overlapped), 125.4 (br, d), 126.5 (d), 127.4 (d), 128.0 (d), 130.0 (d), 130.5 (d), 139.0 (s , one singlet overlapped), $140.2(\mathrm{~s}), 141.3$ (s$), 141.7$ (s), 142.6 (br, s), 146.8 (s), 170.6 (br, s, $\mathrm{C}=\mathrm{O}) ;{ }^{77} \mathrm{Se} \operatorname{NMR}\left(95 \mathrm{MHz}, \mathrm{CDCl}_{3}, 320 \mathrm{~K}\right) \delta 690$.

Reaction of 3 with benzylamine.

The reaction was carried out in an NMR tube with a J-young valve at room temperature. To a solution of $3(8.2 \mathrm{mg}, 4.3 \mu \mathrm{~mol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.6 \mathrm{~mL})$ was added benzylamine ($\left.6.0 \mu \mathrm{~L}, 55 \mu \mathrm{~mol}\right)$ and bis(trimethylsilyl)methane (1 drop, internal standard). The tube was carefully sealed, and the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After 30 min , selenenamide 18 was formed quantitatively, which was confirmed by ${ }^{1} \mathrm{H}$ NMR measurement. Purification by PTLC was unsuccessful due to complete decomposition of $\mathbf{1 8}$. Isolation of $\mathbf{1 8}$ was accomplished in another experiment through precipitation from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}$, where $18(51.5 \mathrm{mg}, 25.5 \mu \mathrm{~mol}, 68 \%)$ was obtained from $3(72.6 \mathrm{mg}, 37.7 \mu \mathrm{~mol})$ and benzylamine ($21 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$).

18: white crystals; $\mathrm{Mp} 226.5-228.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}), 1.07(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 48 \mathrm{H}), 2.94(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 16 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 6.73-6.75(\mathrm{~m}, 3 \mathrm{H}), 6.80-6.92(\mathrm{~m}, 5 \mathrm{H})$, $7.04(\mathrm{t}, J=1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 16 \mathrm{H}), 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.63(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.82(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.00(\mathrm{t}, J=1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 24.1(\mathrm{q}), 24.3(\mathrm{q}), 30.6(\mathrm{~d}), 58.8(\mathrm{t}), 86.7(\mathrm{t})$, 122.7 (d), 125.4 (d), 126.3 (s), 126.9 (d), 127.8 (d), 128.0 (d), 128.2 (d), 128.3 (d), 128.5 (d), 129.8 (d), 130.7 (d), 134.0 (d), 139.2 (s), 140.9 (s), 141.3 (s), 141.7 (s$), 141.9$ (s), 142.8 (s), 142.9 (s), 146.7 (s); ${ }^{77} \mathrm{Se}$ NMR (95 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 709$.

2. NMR data

(100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)

References

1 Goto, K.; Yamamoto, G.; Tan, B.; Okazaki, R. Tetrahedron Lett. 2001, 42, 4875-4877.
2 Kehlbeck, J. D.; Dimise, E. J.; Sparks, S. M.; Ferrara, S.; Tanski, J. M.; Anderson, C. M. Synthesis 2007, 1979-1983.
3 Lulinski, S.; Serwatowski, J. J. Org. Chem. 2003, 68, 5384-5387.
4 Garcia-Hartjes, J.; Dommerholt, J.; Wennekes, T.; van Delft, F. L.; Zuilhof, H. Eur. J. Org. Chem. 2013, 3712-3720.

