Electronic Supplementary Information

Alkyl substituted 4-pyrrolidinopyridinium salts encapsulated in the cavity of cucurbit[10]uril

Weitao Xu,^a Ming Liu,^a Mary Clare Escaño,^b Carl Redshaw,^{c*} Bing Bian,^d Ying Fan,^a Zhu Tao, ^a and Xin Xiao^{a*}

^a Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China

^b Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan

^d Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, U.K.

^c College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Oingdao 266590, China.

Contents.

Figure S1. ¹H NMR and ¹³C NMR spectrums of g1 in D₂O (400 MHz).

Figure S2. ¹H NMR and ¹³C NMR spectrums of g2 in D₂O (400 MHz).

Figure S3. ¹H NMR and ¹³C NMR spectrums of g3 in D₂O (400 MHz).

Figure S4. ¹H NMR and ¹³C NMR spectrums of g4 in D₂O (400 MHz).

Figure S5. ¹H NMR and ¹³C NMR spectrums of g5 in D_2O (400 MHz).

Figure S6. ¹H NMR and ¹³C NMR spectrums of g6 in D₂O (400 MHz).

Figure S7. Interaction of g3 and Q[10] (20 °C): ¹H NMR spectra (400 MHz, D₂O) of g3 (*ca.* 2 mM) in the absence of Q[10] (A), in the presence of 0.101 equiv. of Q[10] (B), in the presence of 0.199 equiv. of Q[10] (C), in the presence of 0.322 equiv. of Q[10] (D), in the presence of 0.533 equiv. of Q[10] (E), in the presence of 0.890 equiv. of Q[10] (F), in the presence of 1.005 equiv. of Q[10] (G), and in the presence of 1.206 equiv. of Q[10] (H).

Figure S8. Interaction of g5 and Q[10] (20 °C): ¹H NMR spectra (400 MHz, D₂O) of g5 (*ca.* 2 mM) in the absence of Q[10] (A), in the presence of 0.093 equiv. of Q[10] (B), in the presence of 0.299 equiv. of Q[10] (C), in the presence of 0.431 equiv. of Q[10] (D), in the presence of 1.008 equiv. of Q[10] (E) and in the presence of 1.502 equiv. of Q[10] (F).

Figure S1. ¹H and ¹³C NMR spectra of g1 in D_2O (400 MHz).

Figure S2. ¹H and ¹³C NMR spectra of g2 in D_2O (400 MHz).

Figure S3. ¹H and ¹³C NMR spectra of g3 in D_2O (400 MHz).

Figure S4. ¹H and ¹³C NMR spectra of g4 in D_2O (400 MHz).

Figure S5. ¹H and ¹³C NMR spectra of g5 in D_2O (400 MHz).

Figure S6. ¹H and ¹³C NMR spectra of g6 in D_2O (400 MHz).

Figure S7. Interaction of g3 and Q[10] (20 °C): ¹H NMR spectra (400 MHz, D₂O) of g3 (*ca.* 2 mM) in the absence of Q[10] (A), in the presence of 0.101 equiv. of Q[10] (B), in the presence of 0.199 equiv. of Q[10] (C), in the presence of 0.322 equiv. of Q[10] (D), in the presence of 0.533 equiv. of Q[10] (E), in the presence of 0.890 equiv. of Q[10] (F), in the presence of 1.005 equiv. of Q[10] (G), and in the presence of 1.206 equiv. of Q[10] (H).

Figure S8. Interaction of g5 and Q[10] (20 °C): ¹H NMR spectra (400 MHz, D₂O) of g5 (*ca.* 2 mM) in the absence of Q[10] (A), in the presence of 0.093 equiv. of Q[10] (B), in the presence of 0.299 equiv. of Q[10] (C), in the presence of 0.431 equiv. of Q[10] (D), in the presence of 1.008 equiv. of Q[10] (E) and in the presence of 1.502 equiv. of Q[10] (F).