Porous Supramolecular assemblies and functional properties of

perhydroxylated cucurbit[6]uril and polyoxometallates

Xi Xia,^a Wei Wei Ge, ^b Haiyong Chen,^a Zhu Tao,^a Yunqian Zhang^{*a} Gang Wei^{*c} and Kai Chen^{*b}

E-mail: <u>sci.yqzhang@gzu.edu.cn</u> (Yun-Qian Zhang)

- ^{b.} Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044. E-mail: <u>kaichen85@nuist.edu.cn</u> or <u>catqchen@163.com</u>
- ^{c.} CSIRO Manufacturing Flagship, PO Box 218, Lindfield, NSW 2070, Australia.E-mail: Gang.Wei@csiro.au.

^{a.} Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China

Fig. S1. Crystal structure of another A: (a and c) top view and side view of the detailed interactions of each $(HO)_{12}Q[6]$ molecule with six $[PWO_{40}]^{3-}$ anions; (b and d) top view and side view of the detailed interactions of each $[PWO_{40}]^{3-}$ anion with six $(HO)_{12}Q[6]$ molecules; (e) overview of the supramolecular stacking of $(HO)_{12}Q[6]$ molecules and $[PWO_{40}]^{3-}$ anions along *a* and *b* axes; (f) step-like supramolecular network of $(HO)_{12}Q[6]$ molecules and $[PWO_{40}]^{3-}$ anions along the *c* axes.

Fig. S2. Powder X-ray diffraction analysis of A* and B accompanied by simulations.

Fig. S3. FTIR spectra of $(HO)_{12}Q[6]$, $[PMo_{12}O_{40}]^{3-}$, hybrid of $(HO)_{12}Q[6]$ with $[PMo_{12}O_{40}]^{3-}$ anions

Fig. S4. DTA and TG profiles of (a) A^* ; (b) B; (c) $H_3PMo_{12}O_{40}$.

Fig. S5. Time-dependent UV/vis spectral changes of the rhodamine B solution in the presence of **A*** under visible light irradiation.

Fig. S6. Time-dependent UV/vis spectral changes of the acriflavine solution in the presence of **A*** under visible light irradiation.

Fig.S7 The sorption isotherms of N_2 at 77 K by a micrometrics ASAP2020HD88 automated Adsorption analyser. \blacksquare symbol = adsorption and, \bullet symbol = desorption of A^* .

Fig. S8 The sorption isotherms of N_2 at 77 K by a micrometrics ASAP2020HD88 automated Adsorption analyser. \blacksquare symbol = adsorption and, \bullet symbol = desorption of **B**.

Fig. S9 Powder X-ray diffraction analysis of A*: simulated and after etherification catalytic.

Volatiles	A*	В
tetrachloromethane	0.23	0.08
trichloromethane	0.38	0.20
dichloromethane	0.26	0.08
acetonitrile	0.12	0.09
ethoxyethane	0.14	0.07
ethanol	0.11	0.09
acetone	0.22	0.33
methanol	0.18	0.28

Table S1. Normalized adsorption data of A^* and B for the selected volatile compounds $(g \cdot g^{-1})$

Table S2	Crystallographic	data for comp	ounds A*, A and B
		1	,

Complex	A *	Α	В
empirical formula	$C_{36}H_{119}N_{24}O_{104}PMo_{12}$	$C_{36}H_{161}N_{24}O_{125}PW_{12}$	C ₃₆ H ₇₇ N ₂₄ O ₄₃ Cl ₃
formula weight	3734.80	5168.06	1640.57
crystal system	hexagonal	hexagonal	hexagonal
space group	R -3m	R -3	R -3c
<i>a</i> (Å)	18.0014(11)	18.096(5)	22.317(3)
<i>b</i> (Å)	18.0014(11)	18.096(5)	22.317(3)
<i>c</i> (Å)	29.4043(18)	29.247(9)	22.272(3)
α (°)	90	90.00	90.00
eta (°)	90	90.00	90.00
γ (°)	120	120.00	120.00
V (Å ³)	8251.9	8294(4)	9606(2)
Ζ	3	3	6
Dcalcd (g·cm ⁻³)	2.255	3.104	1.701

μ(MoKa) (mm ⁻¹)	1.481	1.47	0.273
T (K)	293(2)	293(2)	293(2)
Unique reflns	1991	4426	2677
Obsdreflns	1678	3410	1881
Params	122	213	133
R _{int}	0.0663	0.0588	0.0608
$R \; [I > 2\sigma(I)]^a$	0.0755	0.0502	0.0712
$wR[I>2\sigma(I)]^b$	0.1657	0.1406	0.2209
R [all data] ^a	0.0867	0.0694	0.0913
wR [all data] ^b	0.1721	0.1494	0.2355
GOF on F ²	1.087	1.064	1.129

 ${}^{a}R_{1} = \Sigma ||F_{o}| |F_{c}|| / \Sigma |F_{o}|. \ {}^{b}wR_{2} = |\Sigma w(|F_{o}|^{2} |F_{c}|^{2})| / \Sigma |w(F_{o})^{2}|^{1/2}, \text{ where } w = 1 / [{}^{2}(F_{o}^{2}) + (aP)^{2} + bP]; P = (F_{o}^{2} + 2F_{c}^{2})/3.$