Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Complex formation of copper(II), nickel(II) and zinc(II) with ethylphosphonoacetohydroxamic acid: solution speciation, synthesis and structural characterization

Malgorzata Ostrowska,^{*a*} Irina A. Golenya,^{*b*} Matti Haukka,^{*c*} Igor O. Fritsky,^{**b*} Elzbieta Gumienna-Kontecka^{**a*}

^a Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland. Email: elzbieta.gumienna-kontecka@chem.uni.wroc.pl ^b Department of Chemistry, Targa Sheyehenko National University of Kyiy, 64 Volodymyrska Str

^b Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kiev, Ukraine

^c Department of Chemistry, University of Jyväskylä, Seminaarinkatu 15 (C building), FI-40100 Jyväskylä, Finland

Supplementary Information

Figure S1. pH-dependent changes of UV-Vis spectra of Cu(II)/**PAHEt** system, $[L] = 3.33 \cdot 10^{-3}$ M, metal-to-ligand ratio of 1:3, l = 1cm.

Figure S2. pH-dependent changes of UV-Vis spectra of Ni(II)/**PAHEt** system, $[L] = 5.68 \cdot 10^{-3}$ M, metal-to-ligand ratio of 1:3, l = 5cm.

Figure S3. ESI-MS spectra of Ni(II)/PAHEt system, metal-to-ligand ratio of 1:1 at pH 8.

Figure S4. ESI-MS spectra of Zn(II)/PAHEt system, metal-to-ligand ratio of 1:1 at pH 8.

Figure S5. Packing diagram for **1** (a view along *a* direction of the crystal). Hydrogen atoms not involved into H-bonds and minor fractions of the disordered atoms are omitted for clarity. Colour scheme: turquoise = Cu, red = O, blue = N, black = C and H, purple = P, green = Na. H-bonds are represented by dashed lines.

Figure S6. Packing diagram for **1** (a view along *b* direction of the crystal). Hydrogen atoms not involved into H-bonds and minor fractions of the disordered atoms are omitted for clarity. Colour scheme: turquoise = Cu, red = O, blue = N, black = C and H, purple = P, green = Na. H-bonds are represented by dashed lines.

Figure S7. Packing diagram for **1** (a view along *c* direction of the crystal). Hydrogen atoms not involved into H-bonds and minor fractions of the disordered atoms are omitted for clarity. Colour scheme: turquoise = Cu, red = O, blue = N, black = C and H, purple = P, green = Na. H-bonds are represented by dashed lines.

Fable S1. Crystal data and structure refine	ment parameters for the X-ray structure of 1 .
---	---

$\underline{2(C_{20}H_{46}Cu_5N_4Na_4O_{30}P_4)} \cdot 3(H_2O)$	$F(000) = \underline{1396}$
$M_r = 2766.34$	
Triclinic, <u>P-1</u>	$D_{\rm x} = 1.970 {\rm Mg} {\rm m}^{-3}$
Hallsymbol: <u>?</u>	
<i>a</i> = <u>11.5160 (3)</u> Å	<u>MoKa</u> radiation, $\lambda = 0.71073$ Å
<i>b</i> = <u>13.9940 (3)</u> Å	
c = 14.6740(2) Å	$\theta = \underline{1.0} - \underline{27.5}^{\circ}$
$\alpha = 91.470 (1)^{\circ}$	$\mu = 2.52 \text{ mm}^{-1}$
$\beta = 99.155 (1)^{\circ}$	$T = \underline{100} \text{ K}$
$\gamma = 91.943 (1)^{\circ}$	Needle, green
$V = 2332.17 (9) Å^3$	$\underline{0.22} \times \underline{0.10} \times \underline{0.09}$ mm
Z = 1	

Crystal data

Data collection

NoniusKappaCCD diffractometer	10669 independent reflections
Radiation source: fine-focus sealed tube	<u>8022</u> reflections with $\underline{I} > 2\sigma(\underline{I})$
Horizontally mounted graphite crystal monochromator	$R_{\rm int} = 0.051$
Detector resolution: <u>9 pixels mm⁻¹</u>	$\theta_{\text{max}} = \underline{27.5}^{\circ}, \ \theta_{\text{min}} = \underline{2.6}^{\circ}$
φ scans and ω scans with κ offset	h = -14 14
Absorption correction: <u>multi-scan</u> <u>SORTAV (Blessing, 1995)</u>	k = -18 18
$T_{\min} = 0.596, T_{\max} = 0.795$	l = -17 19
45451 measured reflections	

Refinement

Refinement on $\underline{F^2}$	
Least-squares matrix: <u>full</u>	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = \underline{0.041}$	H-atom parameters constrained
$wR(F^2) = \underline{0.109}$	$\frac{w = 1/[\sigma^2(F_o^2) + (0.0475P)^2 + 5.3531P]}{\text{where } P = (F_o^2 + 2F_c^2)/3}$
S = 1.02	$(\Delta/\sigma)_{\rm max} = \underline{0.001}$
10669 reflections	$\Delta \rho_{max} = \underline{1.96} \text{ e } \text{\AA}^{-3}$
648 parameters	$\Delta \rho_{min} = \underline{-0.65} \ e \ \text{\AA}^{-3}$
<u>6</u> restraints	

 Table S4. Bond lengths (Å) and angles (°) for 1.

Cu1—O2	1.901 (3)	O9—C12	1.302 (4)
Cu1—O21 ⁱ	1.926 (3)	O11—C8	1.296 (4)
Cu1—O1	1.955 (3)	O13—C3B	1.308 (18)
Cu1—N1	1.971 (3)	O13—C3A	1.429 (7)
Cu1—O6 ⁱⁱ	2.439 (3)	O16—C6	1.457 (6)
Cu2—O3	1.864 (2)	O18—H18O	0.9498
Cu2—O12	1.900 (3)	O18—H18P	0.9430
Cu2—O11	1.947 (2)	O19—H19O	0.9735
Cu2—N2	1.970 (3)	O19—H19P	0.7701
Cu2—Na1	3.3549 (15)	O22—C16	1.425 (6)
Cu3—O3	1.893 (2)	O24—C10	1.451 (5)
Cu3—07	1.916 (3)	O25—H25O	0.8537
Cu3—O2	1.926 (2)	O25—H25P	0.8473
Cu3—O6	1.967 (2)	O26—H26A	0.8500
Cu3—O4	2.187 (3)	O26—H26B	0.8500
Cu4—07	1.903 (2)	O27—H27O	0.9116

Cu4—O15	1.905 (2)	O27—H27P	0.9138
Cu4—O8	1.929 (3)	O28—H28O	0.9031
Cu4—N4	1.961 (3)	O28—H28P	0.8226
Cu5—O9	1.942 (2)	O29—C19	1.248 (5)
Cu5—O6	1.949 (2)	O30—C19	1.267 (5)
Cu5—N3	1.952 (3)	O31—H31O	0.9530
Cu5—O10	1.961 (3)	O31—H31P	0.8146
Cu5—O5	2.338 (3)	O32A—H32A	0.8500
Cu5—Na3	3.2854 (19)	O32A—H32B	0.8500
Cu5—Na4	3.3120 (15)	O32B—H32C	0.8499
P1—O14	1.500 (3)	O32B—H32D	0.8499
P1—O12	1.525 (3)	N1—C5	1.300 (5)
P1—O13	1.575 (3)	N2—C1	1.306 (5)
P1—C2	1.802 (4)	N3—C8	1.299 (5)
P2—O17	1.496 (3)	N4—C12	1.298 (5)
P2—O15	1.514 (3)	C1—C2	1.509 (5)
P2—O16	1.584 (3)	C2—H2A	0.9900
P2—C13	1.812 (4)	С2—Н2В	0.9900
Р3—О23	1.481 (3)	C3A—C4A	1.509 (8)
P3—O10	1.525 (3)	СЗА—НЗА	0.9900
P3—O24	1.595 (3)	СЗА—НЗВ	0.9900
Р3—С9	1.807 (4)	C4A—H4A1	0.9800
P3—Na3	3.208 (2)	C4A—H4A2	0.9800
P4—O20	1.485 (3)	C4A—H4A3	0.9800
P4—O21	1.524 (3)	C3B—C4B	1.73 (2)
P4—O22	1.590 (3)	СЗВ—НЗС	0.9900
P4—C18	1.810 (4)	C3B—H3D	0.9900
Na1—O20	2.259 (3)	C4B—H4B1	0.9800
Na1—O11	2.296 (3)	C4B—H4B2	0.9800

Na1—O19	2.317 (3)	C4B—H4B3	0.9800
Na1—O18	2.318 (3)	C5—C18 ⁱ	1.501 (5)
Na1—O12	2.663 (3)	C6—C7	1.466 (7)
Na1—Na2	3.323 (2)	С6—Н6А	0.9900
Na2—O29 ⁱⁱⁱ	2.325 (3)	С6—Н6В	0.9900
Na2—O18	2.394 (3)	С7—Н7А	0.9800
Na2—O19	2.448 (3)	С7—Н7В	0.9800
Na2—O27 ^{iv}	2.450 (3)	С7—Н7С	0.9800
Na2—O29 ^{iv}	2.468 (3)	C8—C9	1.504 (5)
Na2—O28 ⁱⁱⁱ	2.484 (3)	С9—Н9А	0.9900
Na2—Na2 ^v	3.475 (3)	С9—Н9В	0.9900
Na2—Na4 ^{iv}	3.581 (2)	C10-C11	1.523 (7)
Na2—Na4 ⁱⁱⁱ	3.610 (2)	C10—H10A	0.9900
Na2—H19P	2.5733	C10—H10B	0.9900
Na3—O5	2.220 (4)	C11—H11A	0.9800
Na3—O25	2.244 (4)	C11—H11B	0.9800
Na3—O26	2.283 (4)	C11—H11C	0.9800
Na3—O24	2.479 (3)	C12—C13	1.505 (5)
Na3—O10	2.646 (3)	C13—H13A	0.9900
Na3—O32B	2.68 (2)	C13—H13B	0.9900
Na3—Na4	3.561 (2)	C14—C15	1.535 (7)
Na4—O27	2.350 (3)	C15—H15A	0.9800
Na4—O10	2.369 (3)	C15—H15B	0.9800
Na4—O28	2.399 (3)	C15—H15C	0.9800
Na4—O26	2.448 (4)	C16—C17	1.497 (8)
Na4—O9	2.474 (3)	C16—H16A	0.9900
Na4—O29	2.495 (3)	C16—H16B	0.9900
Na4—H28O	2.5217	C17—H17A	0.9800
01—C1	1.287 (4)	С17—Н17В	0.9800

O2—N2	1.412 (4)	С17—Н17С	0.9800
O3—N3	1.403 (4)	C18—H18A	0.9900
O4—C14	1.250 (6)	C18—H18B	0.9900
O5—C14	1.266 (5)	C19—C20	1.497 (5)
O6—N4	1.431 (4)	C20—H20A	0.9800
O7—N1	1.416 (4)	C20—H20B	0.9800
O8—C5	1.301 (4)	C20—H20C	0.9800
O2—Cu1—O21 ⁱ	170.84 (13)	O10—Na4—Na2 ⁱⁱⁱ	101.73 (8)
O2—Cu1—O1	80.75 (10)	O28—Na4—Na2 ⁱⁱⁱ	43.24 (7)
O21 ⁱ —Cu1—O1	95.23 (11)	O26—Na4—Na2 ⁱⁱⁱ	129.42 (12)
O2—Cu1—N1	90.00 (11)	O9—Na4—Na2 ⁱⁱⁱ	142.74 (9)
O21 ⁱ —Cu1—N1	93.44 (12)	O29—Na4—Na2 ⁱⁱⁱ	39.73 (7)
O1—Cu1—N1	170.17 (12)	Cu5—Na4—Na2 ⁱⁱⁱ	122.29 (5)
O2—Cu1—O6 ⁱⁱ	98.46 (11)	Na3—Na4—Na2 ⁱⁱⁱ	133.93 (6)
O21 ⁱ —Cu1—O6 ⁱⁱ	89.92 (10)	Na2 ^{vi} —Na4—Na2 ⁱⁱⁱ	57.79 (5)
O1—Cu1—O6 ⁱⁱ	92.73 (10)	O27—Na4—H28O	82.5
N1—Cu1—O6 ⁱⁱ	91.91 (11)	O10—Na4—H28O	100.4
O3—Cu2—O12	172.95 (11)	O28—Na4—H28O	21.0
O3—Cu2—O11	81.62 (10)	O26—Na4—H28O	167.7
O12—Cu2—O11	91.38 (11)	O9—Na4—H28O	85.4
O3—Cu2—N2	89.90 (11)	O29—Na4—H28O	97.4
O12—Cu2—N2	97.11 (12)	Cu5—Na4—H28O	86.8
O11—Cu2—N2	171.40 (11)	Na3—Na4—H28O	143.5
O3—Cu2—Na1	120.58 (8)	Na2 ^{vi} —Na4—H28O	85.9
O12—Cu2—Na1	52.43 (8)	Na2 ⁱⁱⁱ —Na4—H28O	59.6
O11—Cu2—Na1	41.56 (7)	C1—O1—Cu1	110.8 (2)
N2—Cu2—Na1	146.87 (9)	N2—O2—Cu1	113.4 (2)
O3—Cu3—O7	164.08 (12)	N2—O2—Cu3	122.4 (2)
O3—Cu3—O2	87.70 (11)	Cu1—O2—Cu3	119.19 (13)

O7—Cu3—O2	89.54 (10)	N3—O3—Cu2	115.1 (2)
O3—Cu3—O6	92.04 (10)	N3—O3—Cu3	121.2 (2)
O7—Cu3—O6	86.94 (10)	Cu2—O3—Cu3	123.60 (13)
O2—Cu3—O6	166.18 (11)	C14—O4—Cu3	126.7 (3)
O3—Cu3—O4	98.20 (13)	C14—O5—Na3	137.4 (3)
O7—Cu3—O4	97.71 (12)	C14—O5—Cu5	130.1 (3)
O2—Cu3—O4	97.55 (12)	Na3—O5—Cu5	92.22 (12)
O6—Cu3—O4	96.17 (12)	N4—O6—Cu5	108.66 (18)
O7—Cu4—O15	173.60 (11)	N4—O6—Cu3	113.06 (19)
O7—Cu4—O8	81.16 (10)	Cu5—O6—Cu3	107.84 (12)
O15—Cu4—O8	92.45 (11)	N4—O6—Cu1 ⁱⁱ	109.94 (18)
O7—Cu4—N4	91.72 (11)	Cu5—O6—Cu1 ⁱⁱ	106.93 (11)
O15—Cu4—N4	94.68 (11)	Cu3—O6—Cu1 ⁱⁱ	110.18 (10)
O8—Cu4—N4	172.43 (11)	N1	112.66 (19)
O9—Cu5—O6	81.70 (10)	N1—O7—Cu3	119.6 (2)
O9—Cu5—N3	174.55 (12)	Cu4—O7—Cu3	114.59 (12)
O6—Cu5—N3	93.14 (11)	C5—O8—Cu4	111.1 (2)
O9—Cu5—O10	91.11 (11)	C12—O9—Cu5	108.9 (2)
O6—Cu5—O10	169.18 (11)	C12—O9—Na4	154.6 (2)
N3—Cu5—O10	94.24 (12)	Cu5—O9—Na4	96.42 (10)
O9—Cu5—O5	86.47 (11)	P3—O10—Cu5	127.92 (16)
O6—Cu5—O5	92.70 (11)	P3—O10—Na4	132.00 (15)
N3—Cu5—O5	92.05 (12)	Cu5—O10—Na4	99.38 (11)
O10—Cu5—O5	94.93 (12)	P3—O10—Na3	96.84 (14)
O9—Cu5—Na3	79.39 (8)	Cu5—O10—Na3	89.71 (11)
O6—Cu5—Na3	131.83 (8)	Na4—O10—Na3	90.31 (10)
N3—Cu5—Na3	103.01 (10)	C8—O11—Cu2	110.5 (2)
O10—Cu5—Na3	53.65 (9)	C8—O11—Na1	139.6 (2)
O5—Cu5—Na3	42.46 (8)	Cu2—O11—Na1	104.21 (11)

O9—Cu5—Na4	47.94 (8)	P1—O12—Cu2	123.96 (16)
O6—Cu5—Na4	125.86 (8)	P1—O12—Na1	142.59 (15)
N3—Cu5—Na4	137.50 (9)	Cu2—O12—Na1	93.14 (10)
O10—Cu5—Na4	44.89 (8)	C3B—O13—P1	131.8 (9)
O5—Cu5—Na4	101.16 (8)	C3A—O13—P1	120.2 (3)
Na3—Cu5—Na4	65.33 (4)	P2—O15—Cu4	121.63 (15)
O14—P1—O12	112.33 (15)	C6—O16—P2	119.9 (3)
O14—P1—O13	110.70 (17)	Na1—O18—Na2	89.67 (11)
O12—P1—O13	110.06 (16)	Na1—O18—H18O	103.5
O14—P1—C2	109.72 (17)	Na2—O18—H18O	131.7
O12—P1—C2	110.97 (17)	Na1—O18—H18P	130.9
O13—P1—C2	102.64 (17)	Na2—O18—H18P	110.0
O17—P2—O15	114.91 (15)	H18O—O18—H18P	95.9
O17—P2—O16	110.95 (16)	Na1—O19—Na2	88.40 (10)
O15—P2—O16	106.12 (16)	Na1—O19—H19O	115.6
O17—P2—C13	109.20 (16)	Na2—O19—H19O	98.2
O15—P2—C13	109.13 (16)	Na1—O19—H19P	148.9
O16—P2—C13	106.14 (18)	Na2—O19—H19P	90.6
O23—P3—O10	117.45 (16)	H19O—O19—H19P	95.3
O23—P3—O24	111.73 (16)	P4—O20—Na1	162.3 (2)
O10—P3—O24	103.11 (15)	P4—O21—Cu1 ^{vii}	118.67 (15)
O23—P3—C9	108.50 (17)	C16—O22—P4	121.8 (3)
O10—P3—C9	109.33 (17)	C10—O24—P3	122.5 (3)
O24—P3—C9	106.10 (17)	C10—O24—Na3	121.2 (3)
O23—P3—Na3	122.95 (12)	P3—O24—Na3	101.67 (14)
O10—P3—Na3	54.99 (12)	Na3—O25—H25O	133.2
O24—P3—Na3	49.18 (11)	Na3—O25—H25P	116.8
C9—P3—Na3	127.86 (13)	H25O—O25—H25P	108.6
O20—P4—O21	113.23 (16)	Na3—O26—Na4	97.60 (13)

O20—P4—O22	112.61 (19)	Na3—O26—H26A	112.4
O21—P4—O22	109.23 (17)	Na4—O26—H26A	112.4
O20—P4—C18	110.63 (17)	Na3—O26—H26B	112.0
O21—P4—C18	110.78 (17)	Na4—O26—H26B	112.1
O22—P4—C18	99.55 (17)	H26A—O26—H26B	109.8
O20—Na1—O11	101.27 (11)	Na4—O27—Na2 ^{vi}	96.46 (10)
O20—Na1—O19	116.45 (12)	Na4—O27—H27O	123.2
O11—Na1—O19	136.27 (12)	Na2 ^{vi} —O27—H27O	117.5
O20-Na1-O18	98.56 (12)	Na4—O27—H27P	108.4
O11—Na1—O18	105.96 (11)	Na2 ^{vi} —O27—H27P	103.6
O19—Na1—O18	90.18 (11)	H27O—O27—H27P	105.9
O20—Na1—O12	167.88 (11)	Na4—O28—Na2 ⁱⁱⁱ	95.32 (10)
O11—Na1—O12	66.95 (9)	Na4—O28—H28O	87.2
O19—Na1—O12	73.53 (9)	Na2 ⁱⁱⁱ —O28—H28O	135.5
O18—Na1—O12	87.89 (10)	Na4—O28—H28P	107.7
O20—Na1—Na2	101.10 (9)	Na2 ⁱⁱⁱ —O28—H28P	119.4
O11—Na1—Na2	146.59 (9)	H28O—O28—H28P	101.6
O19—Na1—Na2	47.42 (8)	C19—O29—Na2 ⁱⁱⁱ	124.6 (3)
O18—Na1—Na2	46.09 (7)	C19—O29—Na2 ^{vi}	118.1 (2)
O12—Na1—Na2	90.77 (7)	Na2 ⁱⁱⁱ —O29—Na2 ^{vi}	92.88 (10)
O20—Na1—Cu2	134.60 (9)	C19—O29—Na4	123.7 (3)
O11—Na1—Cu2	34.22 (7)	Na2 ⁱⁱⁱ —O29—Na4	96.96 (10)
O19—Na1—Cu2	107.85 (8)	Na2 ^{vi} —O29—Na4	92.35 (10)
O18—Na1—Cu2	90.49 (8)	H31O—O31—H31P	107.9
O12—Na1—Cu2	34.43 (6)	H32A—O32A—H32B	109.7
Na2—Na1—Cu2	116.36 (5)	Na3—O32B—H32C	116.3
O29 ⁱⁱⁱ —Na2—O18	100.37 (11)	Na3—O32B—H32D	105.4
O29 ⁱⁱⁱ —Na2—O19	167.68 (11)	H32C—O32B—H32D	111.4
O18—Na2—O19	85.35 (10)	C5—N1—O7	110.7 (3)

O29 ⁱⁱⁱ —Na2—O27 ^{iv}	102.46 (11)	C5—N1—Cu1	135.4 (3)
O18—Na2—O27 ^{iv}	96.60 (10)	07—N1—Cu1	113.6 (2)
O19—Na2—O27 ^{iv}	87.56 (10)	C1—N2—O2	110.5 (3)
O29 ⁱⁱⁱ —Na2—O29 ^{iv}	87.12 (10)	C1—N2—Cu2	133.8 (3)
O18—Na2—O29 ^{iv}	171.95 (11)	O2—N2—Cu2	115.6 (2)
O19—Na2—O29 ^{iv}	86.73 (10)	C8—N3—O3	110.4 (3)
O27 ^{iv} —Na2—O29 ^{iv}	84.52 (10)	C8—N3—Cu5	136.0 (3)
O29 ⁱⁱⁱ —Na2—O28 ⁱⁱⁱ	84.70 (10)	O3—N3—Cu5	113.3 (2)
O18—Na2—O28 ⁱⁱⁱ	87.37 (10)	C12—N4—O6	111.8 (3)
O19—Na2—O28 ⁱⁱⁱ	84.68 (10)	C12—N4—Cu4	134.6 (3)
O27 ^{iv} —Na2—O28 ⁱⁱⁱ	170.97 (11)	O6—N4—Cu4	113.5 (2)
O29 ^{iv} —Na2—O28 ⁱⁱⁱ	90.43 (10)	O1—C1—N2	122.2 (3)
O29 ⁱⁱⁱ —Na2—Na1	136.54 (9)	O1—C1—C2	117.7 (3)
O18—Na2—Na1	44.24 (8)	N2—C1—C2	120.1 (3)
O19—Na2—Na1	44.18 (7)	C1—C2—P1	119.3 (3)
O27 ^{iv} —Na2—Na1	105.56 (8)	C1—C2—H2A	107.5
O29 ^{iv} —Na2—Na1	127.78 (9)	P1—C2—H2A	107.5
O28 ⁱⁱⁱ —Na2—Na1	71.76 (7)	C1—C2—H2B	107.5
O29 ⁱⁱⁱ —Na2—Na2 ^v	45.20 (7)	P1—C2—H2B	107.5
O18—Na2—Na2 ^v	145.47 (11)	H2A—C2—H2B	107.0
O19—Na2—Na2 ^v	127.82 (10)	O13—C3A—C4A	109.2 (5)
O27 ^{iv} —Na2—Na2 ^v	94.39 (8)	013—СЗА—НЗА	109.8
O29 ^{iv} —Na2—Na2 ^v	41.93 (7)	С4А—С3А—Н3А	109.8
O28 ⁱⁱⁱ —Na2—Na2 ^v	86.77 (8)	O13—C3A—H3B	109.8
Na1—Na2—Na2 ^v	157.05 (8)	С4А—С3А—Н3В	109.8
O29 ⁱⁱⁱ —Na2—Na4 ^{iv}	92.86 (8)	НЗА—СЗА—НЗВ	108.3
O18—Na2—Na4 ^{iv}	137.28 (9)	C3A—C4A—H4A1	109.5
O19—Na2—Na4 ^{iv}	90.14 (8)	C3A—C4A—H4A2	109.5
O27 ^{iv} —Na2—Na4 ^{iv}	40.71 (7)	H4A1—C4A—H4A2	109.5

O29 ^{iv} —Na2—Na4 ^{iv}	44.11 (7)	СЗА—С4А—Н4АЗ	109.5
O28 ⁱⁱⁱ —Na2—Na4 ^{iv}	134.52 (8)	Н4А1—С4А—Н4А3	109.5
Na1—Na2—Na4 ^{iv}	129.70 (6)	Н4А2—С4А—Н4А3	109.5
Na2 ^v —Na2—Na4 ^{iv}	61.53 (5)	O13—C3B—C4B	103.0 (12)
O29 ⁱⁱⁱ —Na2—Na4 ⁱⁱⁱ	43.31 (7)	O13—C3B—H3C	111.2
O18—Na2—Na4 ⁱⁱⁱ	93.68 (8)	C4B—C3B—H3C	111.2
O19—Na2—Na4 ⁱⁱⁱ	125.99 (8)	O13—C3B—H3D	111.2
O27 ^{iv} —Na2—Na4 ⁱⁱⁱ	145.64 (9)	C4B—C3B—H3D	111.2
O29 ^{iv} —Na2—Na4 ⁱⁱⁱ	89.77 (8)	H3C—C3B—H3D	109.1
O28 ⁱⁱⁱ —Na2—Na4 ⁱⁱⁱ	41.43 (7)	C3B—C4B—H4B1	109.5
Na1—Na2—Na4 ⁱⁱⁱ	104.64 (5)	C3B—C4B—H4B2	109.5
Na2 ^v —Na2—Na4 ⁱⁱⁱ	60.68 (5)	H4B1—C4B—H4B2	109.5
Na4 ^{iv} —Na2—Na4 ⁱⁱⁱ	122.21 (5)	C3B—C4B—H4B3	109.5
O29 ⁱⁱⁱ —Na2—H19P	152.9	H4B1—C4B—H4B3	109.5
O18—Na2—H19P	102.4	H4B2—C4B—H4B3	109.5
O19—Na2—H19P	17.4	N1—C5—O8	121.6 (3)
O27 ^{iv} —Na2—H19P	89.4	N1-C5-C18 ⁱ	121.1 (3)
O29 ^{iv} —Na2—H19P	69.7	O8—C5—C18 ⁱ	117.3 (3)
O28 ⁱⁱⁱ —Na2—H19P	81.9	O16—C6—C7	110.2 (4)
Na1—Na2—H19P	59.6	O16—C6—H6A	109.6
Na2 ^v —Na2—H19P	110.4	С7—С6—Н6А	109.6
Na4 ^{iv} —Na2—H19P	80.3	O16—C6—H6B	109.6
Na4 ⁱⁱⁱ —Na2—H19P	120.2	С7—С6—Н6В	109.6
O5—Na3—O25	112.75 (14)	H6A—C6—H6B	108.1
O5—Na3—O26	120.16 (16)	С6—С7—Н7А	109.5
O25—Na3—O26	110.65 (15)	С6—С7—Н7В	109.5
O5—Na3—O24	100.55 (12)	Н7А—С7—Н7В	109.5
O25—Na3—O24	91.29 (14)	С6—С7—Н7С	109.5
O26—Na3—O24	117.60 (15)	Н7А—С7—Н7С	109.5

O5—Na3—O10	81.03 (11)	H7B—C7—H7C	109.5
O25—Na3—O10	147.77 (14)	O11—C8—N3	122.3 (3)
O26—Na3—O10	83.55 (12)	О11—С8—С9	119.1 (3)
O24—Na3—O10	56.87 (9)	N3—C8—C9	118.5 (3)
O5—Na3—O32B	174.9 (4)	C8—C9—P3	117.8 (3)
O25—Na3—O32B	72.1 (4)	С8—С9—Н9А	107.9
O26—Na3—O32B	55.4 (4)	Р3—С9—Н9А	107.9
O24—Na3—O32B	80.5 (5)	С8—С9—Н9В	107.9
O10—Na3—O32B	95.5 (5)	Р3—С9—Н9В	107.9
O5—Na3—P3	94.23 (10)	Н9А—С9—Н9В	107.2
O25—Na3—P3	119.61 (12)	O24—C10—C11	111.2 (4)
O26—Na3—P3	98.24 (11)	O24—C10—H10A	109.4
O24—Na3—P3	29.15 (7)	C11—C10—H10A	109.4
O10—Na3—P3	28.17 (6)	O24—C10—H10B	109.4
O32B—Na3—P3	84.3 (5)	C11—C10—H10B	109.4
O5—Na3—Cu5	45.32 (9)	H10A—C10—H10B	108.0
O25—Na3—Cu5	152.16 (12)	C10-C11-H11A	109.5
O26—Na3—Cu5	96.86 (11)	C10-C11-H11B	109.5
O24—Na3—Cu5	79.21 (8)	H11A—C11—H11B	109.5
O10—Na3—Cu5	36.64 (6)	C10-C11-H11C	109.5
O32B—Na3—Cu5	130.6 (4)	H11A—C11—H11C	109.5
P3—Na3—Cu5	57.78 (4)	H11B—C11—H11C	109.5
O5—Na3—Na4	96.63 (10)	N4—C12—O9	122.7 (3)
O25—Na3—Na4	149.50 (12)	N4—C12—C13	120.5 (3)
O26—Na3—Na4	42.95 (9)	O9—C12—C13	116.7 (3)
O24—Na3—Na4	91.22 (9)	C12—C13—P2	119.4 (3)
O10—Na3—Na4	41.70 (6)	C12-C13-H13A	107.5
O32B—Na3—Na4	78.3 (4)	P2—C13—H13A	107.5
P3—Na3—Na4	63.49 (4)	C12—C13—H13B	107.5

Cu5—Na3—Na4	57.70 (4)	P2—C13—H13B	107.5
O27—Na4—O10	164.64 (12)	H13A—C13—H13B	107.0
O27—Na4—O28	96.48 (11)	O4—C14—O5	126.0 (4)
O10—Na4—O28	90.75 (11)	O4—C14—C15	117.4 (4)
O27—Na4—O26	88.39 (11)	O5—C14—C15	116.5 (4)
O10—Na4—O26	86.31 (11)	C14—C15—H15A	109.5
O28—Na4—O26	171.19 (14)	C14—C15—H15B	109.5
O27—Na4—O9	95.16 (10)	H15A—C15—H15B	109.5
O10—Na4—O9	70.20 (9)	C14—C15—H15C	109.5
O28—Na4—O9	99.61 (10)	H15A—C15—H15C	109.5
O26—Na4—O9	87.21 (13)	H15B—C15—H15C	109.5
O27—Na4—O29	86.04 (10)	O22—C16—C17	110.1 (4)
O10—Na4—O29	108.36 (10)	O22—C16—H16A	109.6
O28—Na4—O29	82.94 (10)	C17—C16—H16A	109.6
O26—Na4—O29	90.10 (13)	O22—C16—H16B	109.6
O9—Na4—O29	177.02 (11)	C17—C16—H16B	109.6
O27—Na4—Cu5	130.46 (9)	H16A—C16—H16B	108.2
O10—Na4—Cu5	35.74 (7)	С16—С17—Н17А	109.5
O28—Na4—Cu5	89.46 (8)	C16—C17—H17B	109.5
O26—Na4—Cu5	92.96 (10)	H17A—C17—H17B	109.5
O9—Na4—Cu5	35.64 (6)	С16—С17—Н17С	109.5
O29—Na4—Cu5	143.41 (8)	H17A—C17—H17C	109.5
O27—Na4—Na3	123.06 (9)	H17B—C17—H17C	109.5
O10—Na4—Na3	47.99 (8)	C5 ^{vii} —C18—P4	118.8 (3)
O28—Na4—Na3	138.69 (9)	C5 ^{vii} —C18—H18A	107.6
O26—Na4—Na3	39.45 (9)	P4	107.6
O9—Na4—Na3	68.05 (8)	C5 ^{vii} —C18—H18B	107.6
O29—Na4—Na3	109.02 (8)	P4	107.6
Cu5—Na4—Na3	56.97 (4)	H18A—C18—H18B	107.1

O27—Na4—Na2 ^{vi}	42.83 (7)	O29—C19—O30	123.0 (4)
O10—Na4—Na2 ^{vi}	151.88 (9)	O29—C19—C20	120.9 (4)
O28—Na4—Na2 ^{vi}	85.63 (8)	O30—C19—C20	116.1 (4)
O26—Na4—Na2 ^{vi}	93.05 (10)	C19—C20—H20A	109.5
O9—Na4—Na2 ^{vi}	137.89 (8)	C19—C20—H20B	109.5
O29—Na4—Na2 ^{vi}	43.53 (7)	H20A—C20—H20B	109.5
Cu5—Na4—Na2 ^{vi}	170.79 (6)	C19—C20—H20C	109.5
Na3—Na4—Na2 ^{vi}	130.66 (6)	H20A—C20—H20C	109.5
O27—Na4—Na2 ⁱⁱⁱ	92.77 (8)	H20B—C20—H20C	109.5
O11—Cu2—O3—N3	2.0 (2)	Cu2—O3—N3—Cu5	-177.40 (14)
N2—Cu2—O3—N3	-179.4 (2)	Cu3—O3—N3—Cu5	5.5 (3)
Na1—Cu2—O3—N3	-13.0 (3)	Cu5—O6—N4—C12	19.6 (3)
O11—Cu2—O3—Cu3	179.03 (19)	Cu3—O6—N4—C12	139.3 (3)
N2—Cu2—O3—Cu3	-2.40 (19)	Cu1 ⁱⁱ —O6—N4—C12	-97.1 (3)
Na1—Cu2—O3—Cu3	163.94 (12)	Cu5—O6—N4—Cu4	-158.20 (14)
O7—Cu3—O3—N3	102.6 (4)	Cu3—O6—N4—Cu4	-38.5 (3)
O2—Cu3—O3—N3	-177.2 (3)	Cu1 ⁱⁱ —O6—N4—Cu4	85.1 (2)
O6—Cu3—O3—N3	16.6 (3)	Cu1—O1—C1—N2	8.7 (4)
O4—Cu3—O3—N3	-80.0 (3)	Cu1—O1—C1—C2	-169.1 (3)
O7—Cu3—O3—Cu2	-74.2 (4)	02—N2—C1—O1	2.5 (5)
O2—Cu3—O3—Cu2	5.95 (18)	Cu2—N2—C1—O1	-174.1 (3)
O6—Cu3—O3—Cu2	-160.22 (18)	O2—N2—C1—C2	-179.8 (3)
O4—Cu3—O3—Cu2	103.25 (18)	Cu2—N2—C1—C2	3.6 (6)
O23—P3—O10—Cu5	152.40 (19)	O1—C1—C2—P1	-160.1 (3)
O24—P3—O10—Cu5	-84.3 (2)	N2—C1—C2—P1	22.1 (5)
C9—P3—O10—Cu5	28.3 (3)	O14—P1—C2—C1	-168.6 (3)
Na3—P3—O10—Cu5	-95.0 (2)	O12—P1—C2—C1	-43.9 (4)
O23—P3—O10—Na4	-16.0 (3)	O13—P1—C2—C1	73.7 (3)
O24—P3—O10—Na4	107.3 (2)	P1-013-C3A-C4A	-179.9 (4)

C9—P3—O10—Na4	-140.1 (2)	P1—O13—C3B—C4B	-148.0 (6)
Na3—P3—O10—Na4	96.6 (2)	07—N1—C5—O8	-2.7 (5)
O23—P3—O10—Na3	-112.61 (16)	Cu1—N1—C5—O8	-175.3 (3)
O24—P3—O10—Na3	10.71 (15)	07—N1—C5—C18 ⁱ	178.5 (3)
C9—P3—O10—Na3	123.25 (16)	Cu1—N1—C5—C18 ⁱ	5.8 (6)
O14—P1—O12—Cu2	164.42 (18)	Cu4—O8—C5—N1	-9.6 (4)
O13—P1—O12—Cu2	-71.7 (2)	Cu4—O8—C5—C18 ⁱ	169.2 (3)
C2—P1—O12—Cu2	41.2 (3)	P2	160.6 (4)
O14—P1—O12—Na1	-24.1 (3)	Cu2—O11—C8—N3	0.3 (4)
O13—P1—O12—Na1	99.8 (3)	Na1—O11—C8—N3	147.8 (3)
C2—P1—O12—Na1	-147.3 (2)	Cu2—O11—C8—C9	-176.7 (3)
O11—Cu2—O12—P1	159.2 (2)	Na1—O11—C8—C9	-29.1 (6)
N2—Cu2—O12—P1	-19.5 (2)	O3—N3—C8—O11	1.4 (5)
Na1—Cu2—O12—P1	174.8 (3)	Cu5—N3—C8—O11	174.7 (3)
O11—Cu2—O12—Na1	-15.67 (11)	O3—N3—C8—C9	178.3 (3)
N2—Cu2—O12—Na1	165.64 (12)	Cu5—N3—C8—C9	-8.3 (6)
O14—P1—O13—C3B	136.6 (12)	O11—C8—C9—P3	-143.8 (3)
O12—P1—O13—C3B	11.8 (12)	N3—C8—C9—P3	39.2 (5)
C2—P1—O13—C3B	-106.4 (12)	O23—P3—C9—C8	-177.1 (3)
O14—P1—O13—C3A	65.7 (4)	O10—P3—C9—C8	-47.8 (4)
O12—P1—O13—C3A	-59.1 (4)	O24—P3—C9—C8	62.7 (3)
C2—P1—O13—C3A	-177.2 (4)	Na3—P3—C9—C8	12.3 (4)
O17—P2—O15—Cu4	176.00 (16)	P3—O24—C10—C11	-85.4 (5)
O16—P2—O15—Cu4	-61.0 (2)	Na3—O24—C10—C11	142.9 (4)
C13—P2—O15—Cu4	53.0 (2)	06—N4—C12—O9	-3.1 (5)
O17—P2—O16—C6	-35.9 (4)	Cu4—N4—C12—O9	174.1 (3)
O15—P2—O16—C6	-161.4 (4)	O6—N4—C12—C13	175.4 (3)
C13—P2—O16—C6	82.6 (4)	Cu4—N4—C12—C13	-7.4 (6)
O21—P4—O20—Na1	111.9 (6)	Cu5—O9—C12—N4	-15.2 (4)

O22—P4—O20—Na1	-12.6 (7)	Na4—O9—C12—N4	160.9 (4)
C18—P4—O20—Na1	-123.1 (6)	Cu5—O9—C12—C13	166.2 (3)
O20—P4—O21—Cu1 ^{vii}	-178.40 (18)	Na4—O9—C12—C13	-17.6 (8)
O22—P4—O21—Cu1 ^{vii}	-52.0 (2)	N4—C12—C13—P2	18.5 (5)
C18—P4—O21—Cu1 ^{vii}	56.6 (2)	O9—C12—C13—P2	-162.9 (3)
O20—P4—O22—C16	78.7 (4)	O17—P2—C13—C12	-167.3 (3)
O21—P4—O22—C16	-48.0 (4)	O15—P2—C13—C12	-40.9 (4)
C18—P4—O22—C16	-164.1 (4)	O16—P2—C13—C12	73.1 (3)
O23—P3—O24—C10	-23.9 (4)	Cu3—O4—C14—O5	9.0 (7)
O10—P3—O24—C10	-150.9 (3)	Cu3—O4—C14—C15	-173.4 (3)
C9—P3—O24—C10	94.2 (3)	Na3—O5—C14—O4	-171.5 (3)
Na3—P3—O24—C10	-139.3 (4)	Cu5—O5—C14—O4	0.9 (7)
O23—P3—O24—Na3	115.44 (15)	Na3—O5—C14—C15	10.9 (7)
O10—P3—O24—Na3	-11.60 (16)	Cu5—O5—C14—C15	-176.7 (3)
C9—P3—O24—Na3	-126.49 (15)	P4—O22—C16—C17	178.8 (4)
Cu4—07—N1—C5	14.0 (4)	O20—P4—C18—C5 ^{vii}	-161.6 (3)
Cu3—07—N1—C5	153.1 (2)	O21—P4—C18—C5 ^{vii}	-35.2 (3)
Cu4—07—N1—Cu1	-171.64 (13)	O22—P4—C18—C5 ^{vii}	79.7 (3)
Cu3—O7—N1—Cu1	-32.6 (3)	Na2 ⁱⁱⁱ —O29—C19—O30	164.4 (3)
Cu1—O2—N2—C1	-12.9 (4)	Na2 ^{vi} —O29—C19—O30	48.4 (5)
Cu3—O2—N2—C1	-167.5 (2)	Na4—O29—C19—O30	-66.0 (5)
Cu1—O2—N2—Cu2	164.40 (15)	Na2 ⁱⁱⁱ —O29—C19—C20	-15.3 (5)
Cu3—O2—N2—Cu2	9.8 (3)	Na2 ^{vi} —O29—C19—C20	-131.3 (3)
Cu2—O3—N3—C8	-2.4 (4)	Na4—O29—C19—C20	114.3 (4)
Cu3—O3—N3—C8	-179.5 (2)		

Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+2; (iii) -x, -y+2, -z+2; (iv) x, y, z-1; (v) -x, -y+2, -z+1; (vi) x, y, z+1; (vii) x, y+1, z.

Cu1—O2	1.901 (3)		
Cu1—O21 ⁱ	1.926 (3)		
Cu1—O1	1.955 (3)		
Cu1—N1	1.971 (3)		
Cu1—O6 ⁱⁱ	2.439 (3)		
Cu2—O3	1.864 (2)		
Cu2—O12	1.900 (3)		
Cu2—O11	1.947 (2)		
Cu2—N2	1.970 (3)		
Cu2—Na1	3.3549 (15)		
Cu3—O3	1.893 (2)		
Cu3—O7	1.916 (3)		
Cu3—O2	1.926 (2)		
Cu3—O6	1.967 (2)		
Cu3—O4	2.187 (3)		
Cu4—O7	1.903 (2)		
Cu4—O15	1.905 (2)		
Cu4—O8	1.929 (3)		
Cu4—N4	1.961 (3)		
Cu5—O9	1.942 (2)		
Cu5—O6	1.949 (2)		
Cu5—N3	1.952 (3)		
Cu5—O10	1.961 (3)		
Cu5—O5	2.338 (3)		
O2—Cu1—O21 ⁱ		170.84 (13)	
O2—Cu1—O1		80.75 (10)	
O21 ⁱ —Cu1—O1		95.23 (11)	

Table S5. Selected bond distances (Å) and angles (°) for 1.

O2—Cu1—N1	90.00 (11)
O21 ⁱ —Cu1—N1	93.44 (12)
01—Cu1—N1	170.17 (12)
O2—Cu1—O6 ⁱⁱ	98.46 (11)
O21 ⁱ —Cu1—O6 ⁱⁱ	89.92 (10)
01—Cu1—O6 ⁱⁱ	92.73 (10)
N1—Cu1—O6 ⁱⁱ	91.91 (11)
O3—Cu2—O12	172.95 (11)
O3—Cu2—O11	81.62 (10)
O12—Cu2—O11	91.38 (11)
O3—Cu2—N2	89.90 (11)
O12—Cu2—N2	97.11 (12)
O11—Cu2—N2	171.40 (11)
O3—Cu2—Na1	120.58 (8)
O12—Cu2—Na1	52.43 (8)
O11—Cu2—Na1	41.56 (7)
N2—Cu2—Na1	146.87 (9)
O3—Cu3—O7	164.08 (12)
O3—Cu3—O2	87.70 (11)
O7—Cu3—O2	89.54 (10)
O3—Cu3—O6	92.04 (10)
O7—Cu3—O6	86.94 (10)
O2—Cu3—O6	166.18 (11)
O3—Cu3—O4	98.20 (13)
O7—Cu3—O4	97.71 (12)
O2—Cu3—O4	97.55 (12)
O6—Cu3—O4	96.17 (12)
O7—Cu4—O15	173.60 (11)

81.16 (10)
92.45 (11)
91.72 (11)
94.68 (11)
172.43 (11)
81.70 (10)
174.55 (12)
93.14 (11)
91.11 (11)
169.18 (11)
94.24 (12)

Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+2.

Table S6. Hydrogen bonding details of $1 (\text{\AA}, \circ)$.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	<i>D</i> —H···A
O18—H180····O8 ⁱⁱ	0.95	1.98	2.875 (4)	156
O18—H18P…O23 ⁱⁱⁱ	0.94	1.78	2.722 (4)	176
019—H19 <i>0</i> …014	0.97	1.98	2.940 (4)	168
O25—H250····O31 ^{viii}	0.85	1.99	2.803 (4)	159
O25—H25 <i>P</i> ···O30 ^{ix}	0.85	1.98	2.825 (6)	175
O26—H26 <i>B</i> ⋯O14 ^{vi}	0.85	2.11	2.783 (4)	136
O27—H27 <i>O</i> ····O17 ^x	0.91	1.98	2.849 (4)	159
O27—H27 <i>P</i> ⋯O14 ^{vi}	0.91	1.89	2.781 (4)	166
O28—H28 <i>P</i> ···O20 ⁱⁱⁱ	0.82	2.29	3.038 (4)	151
O28—H28 <i>P</i> ···O21 ⁱⁱⁱ	0.82	2.54	3.202 (4)	138
O31—H310…O1	0.95	1.89	2.806 (4)	162
O31—H31 <i>P</i> ····O17 ^{iv}	0.81	1.94	2.744 (4)	167
O32A ^{a—H32A} a····O30	0.85	1.84	2.524 (11)	136
O32A ^{a—H32A} a····O32A ^a ix	0.85	2.19	2.68 (2)	116

O32Aa—H32B ^{a…O30} ix	0.85	2.07	2.884 (11)	161
O32 <i>B</i> b—H32 $D^{b \cdots O30}$ ix	0.85	2.19	2.684 (19)	117
$O32Bb$ — $H32C^{b\cdots O30}$	0.85	1.81	2.63 (2)	164
C2—H2A…O15ii	0.99	2.54	3.341 (5)	138
C13—H13A…O17x	0.99	2.31	3.253 (5)	159
C20—H20A····O23	0.98	2.51	3.259 (5)	133

Symmetry codes: (ii) -x, -y+1, -z+2; (iii) -x, -y+2, -z+2; (iv) x, y, z-1; (vi) x, y, z+1; (viii) -x+1, -y+1, -z+2; (ix) -x+1, -y+2, -z+3; (x) -x, -y+1, -z+3.

Table S7. Crystal data and structure refinement parameters for the X-ray structures of 2.

Crystal data

$\underline{C_{14}H_{16}CuN_3O_5P \cdot 1.86(H_2O)}$	
$M_r = 434.32$	$D_{\rm x} = 1.723 {\rm Mg m^{-3}}$
Monoclinic, <u>P2₁/c</u>	Melting point: ? K
Hall symbol: <u>?</u>	<u>Mo $K\alpha$</u> radiation, $\lambda = 0.71073$ Å
$a = \underline{9.7384(2)}$ Å	Cell parameters from <u>6923</u> reflections
$b = \underline{12.0645(2)}$ Å	$\theta = \underline{1.0} - \underline{27.5}^{\circ}$
c = 14.2492 (3) Å	$\mu = 1.44 \text{ mm}^{-1}$
$\beta = 90.418 (1)^{\circ}$	$T = \underline{100} \text{ K}$
V = 1674.08 (6) Å ³	Block, bluish green
$Z = \underline{4}$	$\underline{0.21} \times \underline{0.13} \times \underline{0.07} \text{ mm}$
$F(000) = \underline{894.4}$	

Nonius Kappa CCD diffractometer	3845 independent reflections		
	<u>3316</u> reflections with $\underline{I > 2\sigma(I)}$		
	$R_{\rm int} = 0.043$		

Detector resolution: <u>9 pixels mm⁻¹</u>	$\theta_{\text{max}} = \underline{27.5}^{\circ}, \ \theta_{\text{min}} = \underline{2.2}^{\circ}$
ϕ scans and ω scans with κ offset	h = -12 12
Absorption correction: <u>multi-scan</u> <u>SADABS v.2.10 (Sheldrick,</u> <u>2003)</u>	k = -15 15
$T_{\min} = 0.747, T_{\max} = 0.903$	l = -18 18
36861measured reflections	

Refinement

Refinement on $\underline{F^2}$	
Least-squares matrix: <u>full</u>	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = \underline{0.026}$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = \underline{0.065}$	$\frac{w = 1/[\sigma^2(F_o^2) + (0.0238P)^2 + 1.8596P]}{\text{where } P = (F_o^2 + 2F_c^2)/3}$
S = 1.06	$(\Delta/\sigma)_{\rm max} = \underline{0.001}$
3845 reflections	$\Delta \rho_{\text{max}} = \underline{0.39} \text{ e } \text{\AA}^{-3}$
251 parameters	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
<u>0</u> restraints	Extinction correction: none

Cu1—O3	1.9040 (13)	C4—C5	1.388 (3)
Cu1—O2	1.9627 (13)	C4—H4	0.9500
Cu1—N2	1.9813 (15)	C5—C6	1.482 (3)
Cu1—N1	1.9891 (15)	C6—C7	1.388 (3)
Cu1—O1	2.4159 (13)	C7—C8	1.386 (3)
Cu1—Cu1 ⁱ	6.9971 (2)	С7—Н7	0.9500
P1—O4	1.5015 (13)	C8—C9	1.387 (3)
P1—O1 ⁱⁱ	1.5017 (13)	C8—H8	0.9500
P1—O5	1.5983 (13)	C9—C10	1.389 (3)

Table S8. Bond lengths (Å) and angles (°) for 2.

P1—C12	1.8252 (19)	С9—Н9	0.9500
O2—C11	1.291 (2)	С10—Н10	0.9500
O3—N3	1.3728 (19)	C11—C12	1.495 (2)
O5—C13B	1.455 (2)	C12—H12A	0.9900
O5—C13A	1.455 (2)	C12—H12B	0.9900
O7—H7O	0.8202	C13A—C14A	1.490 (3)
O7—H7P	0.8527	C13A—H13A	0.9900
N1—C1	1.342 (2)	C13A—H13B	0.9900
N1—C5	1.356 (2)	C14A—H14A	0.9800
N2—C10	1.338 (2)	C14A—H14B	0.9800
N2—C6	1.353 (2)	C14A—H14C	0.9800
N3—C11	1.298 (2)	O6—H6O	0.9915
N3—H3N	0.87 (2)	Об—Н6Р	0.9504
C1—C2	1.385 (3)	C13B—C14B	1.580 (17)
С1—Н1	0.9500	C13B—H13C	0.9900
C2—C3	1.385 (3)	C13B—H13D	0.9900
С2—Н2	0.9500	C14B—H14D	0.9800
C3—C4	1.387 (3)	C14B—H14E	0.9800
С3—Н3	0.9500	C14B—H14F	0.9800
O3—Cu1—O2	84.88 (5)	C4—C5—C6	123.67 (17)
O3—Cu1—N2	92.87 (6)	N2—C6—C7	121.41 (17)
O2—Cu1—N2	171.77 (6)	N2—C6—C5	114.45 (16)
O3—Cu1—N1	163.35 (6)	C7—C6—C5	124.13 (16)
O2—Cu1—N1	97.82 (6)	C8—C7—C6	118.72 (17)
N2—Cu1—N1	82.12 (6)	С8—С7—Н7	120.6
O3—Cu1—O1	105.02 (5)	С6—С7—Н7	120.6
O2—Cu1—O1	99.46 (5)	С7—С8—С9	119.70 (18)
N2—Cu1—O1	88.77 (5)	С7—С8—Н8	120.1

N1—Cu1—O1	90.81 (5)	С9—С8—Н8	120.1
O3—Cu1—Cu1 ⁱ	83.93 (4)	C8—C9—C10	118.63 (18)
O2—Cu1—Cu1 ⁱ	73.62 (4)	С8—С9—Н9	120.7
N2—Cu1—Cu1 ⁱ	114.08 (4)	С10—С9—Н9	120.7
N1—Cu1—Cu1 ⁱ	112.63 (4)	N2—C10—C9	121.78 (17)
O1—Cu1—Cu1 ⁱ	32.10 (3)	N2-C10-H10	119.1
O4—P1—O1 ⁱⁱ	118.93 (7)	С9—С10—Н10	119.1
O4—P1—O5	110.21 (7)	O2—C11—N3	119.58 (16)
O1 ⁱⁱ —P1—O5	106.07 (7)	O2—C11—C12	122.48 (16)
O4—P1—C12	105.62 (8)	N3—C11—C12	117.90 (16)
O1 ⁱⁱ —P1—C12	110.02 (8)	C11—C12—P1	117.54 (13)
O5—P1—C12	105.24 (8)	C11—C12—H12A	107.9
P1 ⁱ —O1—Cu1	125.77 (7)	P1—C12—H12A	107.9
C11—O2—Cu1	108.63 (11)	C11—C12—H12B	107.9
N3—O3—Cu1	107.53 (10)	P1—C12—H12B	107.9
C13B—O5—P1	118.92 (11)	H12A—C12—H12B	107.2
C13A—O5—P1	118.92 (11)	O5—C13A—C14A	109.23 (17)
Н7О—О7—Н7Р	106.9	O5-C13A-H13A	109.8
C1—N1—C5	119.24 (16)	C14A—C13A—H13A	109.8
C1—N1—Cu1	126.58 (13)	O5—C13A—H13B	109.8
C5—N1—Cu1	114.13 (12)	C14A—C13A—H13B	109.8
C10—N2—C6	119.73 (16)	H13A—C13A—H13B	108.3
C10—N2—Cu1	125.44 (12)	C13A—C14A—H14A	109.5
C6—N2—Cu1	114.54 (12)	C13A—C14A—H14B	109.5
C11—N3—O3	119.35 (15)	H14A—C14A—H14B	109.5
C11—N3—H3N	123.5 (16)	C13A—C14A—H14C	109.5
O3—N3—H3N	117.2 (16)	H14A—C14A—H14C	109.5
N1—C1—C2	121.69 (17)	H14B—C14A—H14C	109.5

N1—C1—H1	119.2	H6O—O6—H6P	103.0
С2—С1—Н1	119.2	O5—C13B—C14B	103.1 (7)
C1—C2—C3	119.36 (18)	O5-C13B-H13C	111.1
С1—С2—Н2	120.3	C14B—C13B—H13C	111.1
С3—С2—Н2	120.3	O5-C13B-H13D	111.1
C2—C3—C4	119.21 (17)	C14B—C13B—H13D	111.1
С2—С3—Н3	120.4	H13C—C13B—H13D	109.1
С4—С3—Н3	120.4	C13B—C14B—H14D	109.5
C3—C4—C5	118.75 (17)	C13B—C14B—H14E	109.5
C3—C4—H4	120.6	H14D—C14B—H14E	109.5
C5—C4—H4	120.6	C13B—C14B—H14F	109.5
N1—C5—C4	121.73 (17)	H14D—C14B—H14F	109.5
N1—C5—C6	114.60 (16)	H14E—C14B—H14F	109.5
O4—P1—O5—C13B	-38.13 (15)	N1—C5—C6—N2	-4.1 (2)
O1 ⁱⁱ —P1—O5—C13B	-168.11 (13)	C4—C5—C6—N2	176.08 (16)
C12—P1—O5—C13B	75.30 (14)	N1—C5—C6—C7	175.05 (17)
O4—P1—O5—C13A	-38.13 (15)	C4—C5—C6—C7	-4.8 (3)
O1 ⁱⁱ —P1—O5—C13A	-168.11 (13)	N2—C6—C7—C8	2.0 (3)
C12—P1—O5—C13A	75.30 (14)	С5—С6—С7—С8	-177.10 (17)
Cu1—O3—N3—C11	1.55 (18)	С6—С7—С8—С9	-2.0 (3)
C5—N1—C1—C2	0.2 (3)	C7—C8—C9—C10	0.6 (3)
Cu1—N1—C1—C2	177.53 (13)	C6—N2—C10—C9	-0.9 (3)
N1—C1—C2—C3	0.5 (3)	Cu1—N2—C10—C9	172.60 (14)
C1—C2—C3—C4	-0.6 (3)	C8—C9—C10—N2	0.9 (3)
C2—C3—C4—C5	0.0 (3)	Cu1—O2—C11—N3	-0.7 (2)
C1—N1—C5—C4	-0.7 (3)	Cu1—O2—C11—C12	-178.21 (13)
Cu1—N1—C5—C4	-178.40 (13)	O3—N3—C11—O2	-0.6 (2)
C1—N1—C5—C6	179.44 (15)	O3—N3—C11—C12	177.03 (14)

Cu1—N1—C5—C6	1.77 (19)	O2—C11—C12—P1	-79.3 (2)	
C3—C4—C5—N1	0.6 (3)	N3-C11-C12-P1	103.16 (17)	
C3—C4—C5—C6	-179.56 (17)	O4—P1—C12—C11	-167.45 (13)	
C10—N2—C6—C7	-0.5 (3)	O1 ⁱⁱ —P1—C12—C11	-37.93 (16)	
Cu1—N2—C6—C7	-174.75 (14)	O5—P1—C12—C11	75.93 (15)	
C10—N2—C6—C5	178.64 (16)	P1	-174.01 (15)	
Cu1—N2—C6—C5	4.42 (19)	P1—O5—C13B—C14B	-134.1 (9)	
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$; (ii) $-x$, $y+1/2$, $-z+1/2$.				

 Table S9. Selected bond distances (Å) and angles (°) for 2.

Cu1—O3	1.9040 (13)	
Cu1—O2	1.9627 (13)	
Cu1—N2	1.9813 (15)	
Cu1—N1	1.9891 (15)	
Cu1—O1	2.4159 (13)	
O3—Cu1—O2		84.88 (5)
O3—Cu1—N2		92.87 (6)
O2—Cu1—N2		171.77 (6)
O3—Cu1—N1		163.35 (6)
O2—Cu1—N1		97.82 (6)
N2—Cu1—N1		82.12 (6)
O3—Cu1—O1		105.02 (5)
O2—Cu1—O1		99.46 (5)
N2—Cu1—O1		88.77 (5)
N1-Cu1-01		90.81 (5)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
O6—H6 <i>O</i> ⋯O2	0.99	1.96	2.901 (2)	159
O6—H6 <i>P</i> ⋯O7	0.95	1.79	2.729 (2)	168
O7—H7 <i>0</i> ⋯O1	0.82	2.00	2.8113 (19)	169
O7—H7 <i>P</i> ⋯O4 ⁱⁱⁱ	0.85	1.98	2.8178 (19)	168
N3—H3 N ····O4 ^{iv}	0.87 (2)	1.91 (3)	2.781 (2)	172 (2)

Table S10. Hydrogen bonding details of $2(\text{\AA}, \circ)$.

Symmetry codes: (iii) x, -y+1/2, z+1/2; (iv) -x, -y, -z.