Columnar self-assembly of novel benzylidenehydrazones and their difluoroboron complexes: structure-property correlations

D. R. Vinayakumara, ${ }^{a}$ K. Swamynathan, ${ }^{b}$ Sandeep Kumar, ${ }^{b}$ Airody Vasudeva Adhikari. ${ }^{* a}$

Supporting information

Table of contents

SL NO.	Contents	Page numbers
1	Materials and methods	S 2
2	Synthesis scheme	S 3
3	Experimental methods	$\mathrm{S} 4-\mathrm{S} 6$
4	FTIR spectra	$\mathrm{S} 7-\mathrm{S} 8$
5	NMR spectra	$\mathrm{S} 9-\mathrm{S} 22$
6	DSC thermograms	$\mathrm{S} 22-\mathrm{S} 23$

1. Materials and methods

All the required reagents and solvents were purchased from Sigma Aldrich, Merck, Spectrochem and SD's Fine Chem. Ltd. and used without any further purifications. The solvents were dried using standard protocols. The reactions were performed under inert atmosphere and completion of the reaction was monitored by TLC technique. Chromatographic separations were carried out using silica gel of mesh size 100-200 and 230400. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on Bruker AMX 500 MHz , in CDCl_{3} and TMS was used as an internal standard. FT-IR spectra were obtained by Bruker alpha Fourier transform IR spectrometer using ATR method. Elemental analysis was performed on a CarloErba Flash 1112 analyser.

The LC properties of all the target molecules were established by recording Differential Scanning Calorimetry (DSC) thermograms using Parkin-Elmer Pyris-1 DSC. Optical textures of mesophases were captured using Olympus BX51 Polarized Optical Microscope (POM) in conjunction with a Mettler FP82HT hot stage and FP90 central processor. Variable temperature powder X-ray diffraction (XRD) measurements of unoriented samples filled in a Lindemann capillary of diameter of 1 mm (Hampton Research) were carried out on DY 1042-Empyrean XRD with Pixel 3D detector at $\mathrm{Cu}-\mathrm{K} \alpha$ radiation.

The photophysical properties of all the liquid crystalline materials were studied using UV-visible spectra and they were recorded at room temperature using SPECORD S 600 spectrophotometer. Further, the Fluorescence spectra were acquired on a Perkin Elmer LS55 Fluorescence spectrophotometer at RT.

Theoretical calculations were made using the Gaussian 09 program. Geometry optimizations were performed using the Becke three-parameter exchange functional and the Lee-Yang-Parr B3LYP exchange correlation functionals with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set for C , H, N, B, and O. Calculations were performed under vacuum.

2. Synthesis scheme

Scheme S1. Synthesis of key-precursors. Reagents and conditions: (a) $n-\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, dry DMF, $80^{\circ} \mathrm{C}$, overnight, 90%; (b) $n-\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, Cat. KI, dry DMF, $80^{\circ} \mathrm{C}$, overnight, 83%; (c) n - $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, Cat. KI, dry DMF, $80^{\circ} \mathrm{C}$, $12 \mathrm{hrs}, 80 \%$; (d) $n-\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, Cat. KI, dry DMF, $80{ }^{\circ} \mathrm{C}$, $12 \mathrm{hrs}, 85 \%$; (e) LAH, dry THF, $-5{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 20 \mathrm{hrs}, 90 \%$; (f) PCC, dry DCM, RT, $4 \mathrm{hrs}, 78 \%$; (g) $\mathrm{NH}_{2}-$ $\mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, reflux, $12 \mathrm{hrs}, 75 \%$

3. Experimental methods

General procedure for the synthesis of hydrazones HZ1-4
The equimolar mixture of aldehyde $\mathbf{A 1}(1 \mathrm{~g}, 3.44 \mathrm{mmol}, 1$ equiv.) and hydrazide $\mathbf{H 1 2}(2.3 \mathrm{~g}$, $3.44 \mathrm{mmol}, 1$ equiv.) was taken in 20 mL of absolute ethanol. To this mixture, catalytic amount of glacial acetic acid was added and reflexed for 2 hours. Then, the mixture was kept for cooling at ambient conditions; the obtained precipitate was filtered and washed with ethanol. The repeated recrystallization with DCM and methanol, HZ1 was isolated in 75% as white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{TMS}$, δ in ppm): $\delta-9.47$ (s, 1 H), 8.25 (s, $1 \mathrm{H}), 7.66(\mathrm{~s}, 2 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.98(\mathrm{~m}, 8 \mathrm{H}), 1.80(\mathrm{~m}$, $8 \mathrm{H}), 1.46(\mathrm{~m}, 8 \mathrm{H}), 1.28(\mathrm{~m}, 64 \mathrm{H}), 0.89(\mathrm{t}, 12 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ ${ }^{\circ} \mathrm{C}$, TMS, δ in ppm): $\delta-161.18,153.19,141.47,129.32,126.05,114.77,114.68,105.94$, $73.55,69.37,68.16,31.93,30.35,29.51,26.08,22.69,14.10$; FTIR (ATR, $v_{\max }$ in cm^{-1}): v 3210 (N-H), 2916 (Ar C-H), 2848 (Aliph C-H), 1646 (C=O), 1609 (Ar C=C); Elemental Anal. Calcd (\%) for $\mathrm{C}_{62} \mathrm{H}_{108} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 77.45; H, 11.32; N, 2.91; Found: C, 77.94; H, 11.12; N, 2.56

The compounds HZ2-4 were synthesized by adopting similar procedure as described for the synthesis of HZ1.

For HZ2 (Yield, 70%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, δ in ppm): $\delta-9.19(\mathrm{~s}, 1 \mathrm{H})$, $8.21(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.98(\mathrm{~m}, 10 \mathrm{H}), 1.83-1.69$ $(\mathrm{m}, 10 \mathrm{H}), 1.48(\mathrm{~m}, 10 \mathrm{H}), 1.28(\mathrm{~m}, 80 \mathrm{H}), 0.89(\mathrm{t}, 15 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{TMS}, \delta$ in ppm$): ~ \delta-153.25,151.57,149.51,141.58,126.41,122.54,112.54$, $105.89,73.57,69.27,31.93,30.34,29.55,26.07,22.69,14.10$; FTIR (ATR, $v_{\max }$ in cm^{-1}): v 3208 (N-H), 2916 (Ar C-H), 2848 (Aliph C-H), 1637 (C=O), 1578 (Ar C=C); Elemental Anal. Calcd (\%) for $\mathrm{C}_{74} \mathrm{H}_{132} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 77.57; H, 11.61; N, 2.44; Found: C 77.31, H 11.78, N, 2.83;

For HZ3 (Yield, 72%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, δ in ppm): $\delta-9.16(\mathrm{~s}, 1 \mathrm{H})$, $8.43(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}) 6.95(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 12 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 12 \mathrm{H}), 1.48$ $(\mathrm{m}, 12 \mathrm{H}), 1.28(\mathrm{~m}, 96 \mathrm{H}), 0.90(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{TMS}, \delta$ in ppm): $\delta-152.75,144.34,141.14,108.72,106.17,73.60,68.55,31.93,30.30,29.38,26.15$, 22.69, 14.0 9; FTIR (ATR, $v_{\max }$ in cm^{-1}): v- 3252 (N-H), 2917 (Ar C-H), 2850 (Aliph C-H),

1643 ($\mathrm{C}=\mathrm{O}$), 1576 ($\mathrm{Ar} \mathrm{C=C}$); Elemental Anal. Calcd (\%) for $\mathrm{C}_{86} \mathrm{H}_{156} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, 77.65; H, 11.82; N, 2.11; Found: C, 80.10; H, 11.53; N, 2.25.

For HZ4 (Yield, 69%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, δ in ppm): $\delta-9.35(\mathrm{~s}, 1 \mathrm{H})$, $8.22(\mathrm{~s}, 1 \mathrm{H}), 7.28-6.94(\mathrm{~m}, 4 \mathrm{H}), 4.00(\mathrm{~m}, 12 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 12 \mathrm{H}), 1.47(\mathrm{~m}, 12 \mathrm{H}), 1.28(\mathrm{~m}$, 96 H), 0.91 (t, $15 \mathrm{H}, J=6.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta$ in ppm): $\delta-$ $153.31,141.61,140.60,128.54,106.18,73.54,69.35,31.93,30.36,29.56,26.12,22.69$, 14.19; FTIR (ATR, $v_{\max }$ in cm^{-1}): v- 3251 (N-H), 2917 (Ar C-H), 2849 (Aliph C-H), 1641 (C=O), 1576 ($\mathrm{Ar} \mathrm{C=C}$); Elemental Anal. Calcd (\%) for $\mathrm{C}_{86} \mathrm{H}_{156} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, 77.65; H, 11.82; N , 2.11; Found: C, 77.99; H, 11.63; N, 2.49.

General procedure for the synthesis of BF_{2} complexes $\mathbf{F B 1} 1-4$
A mixture of hydrazone $\mathbf{H Z 1}(0.5 \mathrm{~g}, 0.52 \mathrm{mmol}, 1$ equiv.) and N, N-Diisopropylethylamine $\left(0.2 \mathrm{~g}, 1.56 \mathrm{mmol}, 3\right.$ equiv.) in dichloroethane was heated to $50^{\circ} \mathrm{C}$ for 15 minutes. Boron trifluoride diethyl etherate $(0.11 \mathrm{~g}, 0.79 \mathrm{mmol}, 1.5$ equiv.) was then added to the mixture and continued the stirring at $70{ }^{\circ} \mathrm{C}$ for overnight. After completion of the reaction, the mixture mass was cooled and poured into ice cold water. Then, aqueous mixture was extracted twice with dichloromethane and dried the combined organic layers. Finally, the crude was purified by silica-gel column chromatography (100-200 mesh size) using mixture of pet-ether and ethyl acetate as eluents, yielded FB1 (Yield, 42%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$, δ in ppm): $\delta-8.32(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $4.00(\mathrm{~m}, 8 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 8 \mathrm{H}), 1.41(\mathrm{~m}, 8 \mathrm{H}), 1.19(\mathrm{~m}, 64 \mathrm{H}), 0.91(\mathrm{t}, 12 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}, \mathrm{TMS}$, δ in ppm): δ - $164.32,153.10,149.17,136.78,121.69$, $121.60,115.25,107.54,73.65,69.41,68.68,31.93,30.35,29.57,26.09,26.13,26.06,25.95$, 22.69, 14.10; FTIR (ATR, $v_{\max }$ in cm^{-1}): v- 2918 (Ar C-H), 2849 (Aliph C-H), 1645 (Ar $\mathrm{C}=\mathrm{N}$), 1601 ($\mathrm{Ar} \mathrm{C}=\mathrm{C}$); Elemental Anal. Calcd (\%) for $\mathrm{C}_{62} \mathrm{H}_{107} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$; C, 73.78; H, 10.69; N, 2.78.; Found: C, 73.39; H, 10.59; N, 2.82.

The remaining members of the series, FB2-4 were synthesized by following the similar procedure as described for the synthesis of FB1.

For FB2 (Yield, 51%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta$ in ppm): $\delta-8.47(\mathrm{~s}, 1 \mathrm{H})$, $7.74(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.07(\mathrm{~m}, 10 \mathrm{H})$, $1.91-1.76(\mathrm{~m}, 10 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 10 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 80 \mathrm{H}), 0.901(\mathrm{t}, 15 \mathrm{H}, J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$

NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}, \delta$ in ppm): $\delta-153.09,149.45,130.71,121.77,112.04$, 107.15, 73.66, 69.06, 31.93, 30.37, 29.43, 26.17, 25.94, 22.69, 14.10; FTIR (ATR, $v_{\max }$ in cm^{-} ${ }^{1}$): v-2917 (Ar C-H), 2849 (Aliph C-H), 1643 (Ar C=N), 1593 (Ar C=C); Elemental Anal. Calcd (\%) for $\mathrm{C}_{74} \mathrm{H}_{131} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 74.46; H, 11.06; N, 2.35; Found: C, 74.85; H, 11.01; N, 2.23.

For FB3 (Yield, 55%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, TMS, δ in ppm): $\delta-8.92(\mathrm{~d}, 1 \mathrm{H}, J$ $=9.0 \mathrm{~Hz}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 4.21(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.13$ $(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 4.07(\mathrm{~m}, 6 \mathrm{H}), 3.98(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 1.90-1.79(\mathrm{~m}, 12 \mathrm{H}), 1.51(\mathrm{~m}, 96 \mathrm{H})$, $0.901(\mathrm{t}, 18 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{TMS}, \delta$ in ppm): $\delta-159.55$, $156.45,153.07,145.13,142.99,140.95,130.17,121.80,116.26,108.21,107.54,75.57$, 73.76, 69.29, 31.93, 30.24, 29.54, 26.13, 14.10; FTIR (ATR, $v_{\max }$ in cm^{-1}): v-2916 (Ar C-H), 2849 (Aliph C-H), 1638 (Ar C=N), 1587 (Ar C=C); Elemental Anal. Calcd (\%) for $\mathrm{C}_{86} \mathrm{H}_{155} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, 74.96; H, 11.34; N, 2.03; Found: C, 74.66; H, 11.49; N, 1.98.

For FB4 (Yield, 60%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, δ in ppm): $\delta-7.65(\mathrm{~s}, 1 \mathrm{H})$, $7.64(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.00-3.94(\mathrm{~s}, 10 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 12 \mathrm{H})$, $1.41(\mathrm{~m}, 12 \mathrm{H}), 1.51(\mathrm{~m}, 96 \mathrm{H}), 0.809(\mathrm{t}, 18 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS, δ in ppm): $\delta-153.10,153.02 .149 .51,144.25,143.04,123.49,121.41,112.76,107.14$, 112.76, 107.14, 73.79, 69.15, 31.93, 30.40, 29.54, 26.12, 14.10; FTIR (ATR, $v_{\max }$ in cm^{-1}): v FTIR (ATR, $v_{\max }$ in cm^{-1}): v-2918 (Ar C-H), 2849 (Aliph C-H), 1645 (Ar C=N), 1587 (Ar $\mathrm{C}=\mathrm{C}$); Elemental Anal. Calcd (\%) for $\mathrm{C}_{86} \mathrm{H}_{155} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, 74.96; H, 11.34; N, 2.03; Found: C, 74.78; H, 11.31; N, 2.12.

4. FTIR spectra

Figure S1. FTIR spectra of HZ1 and FB1

Figure S2. FTIR spectra of HZ2 and FB2

Figure S3. FTIR spectra of HZ3 and FB3

Figure S4. FTIR spectra of HZ4 and FB4
5. NMR Spectra

Figure S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{A 1}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$
-190.67
~~

$\left.\begin{array}{lllllllllllllllll} \\ 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50\end{array}\right)$
Figure S6. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{A 1}$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{A 2}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$
Figure S8. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{A 2}$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{A 3}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

$\begin{array}{llllllllllllllll} \\ 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60\end{array}$
Figure S10. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{A 3}$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{A 4}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$
In

Figure S12. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{A 4}$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{H 1 2}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S14. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{H 1 2}$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S15. ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{H z 1}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S16. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{H z 1}$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

 ザ

Figure S17. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{H Z 2}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S18. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{H z 2}$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S19. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{H Z 3}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S20. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{H Z 3}$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{H Z 4}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S22. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{H Z 4}$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S23. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{F B} 1$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S24. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{F B 1} 1$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S25. ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{F B} 2$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S26. ${ }^{13}$ C-NMR spectrum of $\mathbf{F B} 2$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S27. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{F B 3}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S28. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{F B} 3$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S29. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{F B 4}$ recorded in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S30. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{F B 4}$ recorded in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S31. DSC thermogram of HZ1

Figure S32. DSC thermogram of FB1

Figure S33. DSC thermogram of FB3

