Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information to

Polyoxovanadates inhibition of *Escherichia coli* growth shows a reverse correlation with Ca²⁺-ATPase inhibition

Dorinda Silva^{1,2}, Gil Fraqueza^{3,4}, Ricardo Lagoa^{1,2}, Anjana Anandan Vannathan⁵, Sib Sankar Mal^{5*} and Manuel Aureliano^{4,6*}

¹ESTG, Polytechnic Institute of Leiria, Portugal; ² UCIBIO, Faculty of Science and Technology, University NOVA of Lisbon, Portugal; ³ISE, University of Algarve, 8005-139 Faro, Portugal; ⁴CCMar, University of Algarve, 8005-139 Faro, Portugal; ⁵Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, Karnataka, India; ⁶FCT, University of Algarve, 8005-139 Faro, Portugal

Fig. S1. FT-IR spectrum of the $K_5Mn^{IV}V_{11}O_{32}$ manganesepolyoxovanadate compound. *IR data (solid/KBr pellet, cm⁻¹):* $K_5Mn^{IV}V_{11}O_{32}$: 982,943(*vs*) (V=O_{term}), 837, 589, 560 (*m*) (V-O-V_{as}), 731 (*s*).

Fig. S2. FT-IR spectrum of the $K_7Mn^{IV}V_{13}O_{38}$ manganesepolyoxovanadate compound. *IR data (solid/KBr pellet, cm⁻¹): 964(s) (V=O_{term}), 839,812,578, 524 (V-O-V_{as}),747 (s) (Mn-O-V).*

Figure S3. UV/vis spectra of decavanadate (V10, 0.05 mM) and vanadate (V1, 0.5 mM) after 0 and 3 hours incubation in water (left panel) as well as on the microbiological medium (right panel).

Figure S4. Decavanadate V_{10} concentration 1 mM (panel A) and vanadate V_1 concentration 10 mM (panel B), in culture medium LB, after 24 hours incubation at 37°C.

Figure S5. Lineweaver-Burk plot of Ca^{2+} -ATPase activity in the absence (blue) and in the presence (orange) of 15 μ M of the polyoxometalate MnV₁₁, used for determining the type of enzyme inhibition. The POV presented a mixed type of inhibition. Data are plotted as means \pm SD. The results shown are the average of triplicate experiments.

v	MIC	Ref.
POM/POM-hybrid	(µg/ml)	
Polyoxometalate alone:		
$[V_{10}O_{28}]^{6-}$	50	48
$[P_5W_{30}]^{14-}$	>265	62
$[P_2W_{15}V_3]^{6-}$	>265	62
$[P_2O_7Mo_{18}]^{6-}$	>265	62
$[As_2Mo_{18}]^{6-}$	>265	62
Organic-inorganic-POM:		
organoantimony-		
polyoxotungstate:		
$[(PhSb^{III})_4(A-\alpha-Ge^{IV}W_9O_{34})_2]^{12-1}$	80	45
$[(PhSb^{III})_4(A-\alpha-P^VW_9O_{34})_2]^{10-1}$	110	45
$[\{2-(Me_2NCH_2C_6H_4)Sb^{III}\}_3(B-\alpha-As^{III}W_9O_{33})]^{3-1}$	130	45
$[(PhSb^{III}){Na(H_2O)}As^{III}_2W_{19}O_{67}]^{11-}$	500	46
$[(PhSb^{III})_2As^{III}_2W_{19}O_{67}]^{10-1}$	250	46
$[(PhSb^{III})_3(B-\alpha-As^{III}W_9O_{33})_2]^{12-1}$	125	46
Quinolone-based drug-POM: [Co ^{II} (CoFH22N2O4)2][CoFH22N2O4][HSiW12O40]	2.4	47
	2.1	1,
Nanocomposite: Bamboo charcoal-POM: BC/POM	4	50
Polymer-POM: PVA/PEI-POM:		
PVA-PEI-H ₅ PV ₂ Mo ₁₀ O ₄₀	2	49
Chitosan-POM:		
$CTS-Ca_3V_{10}O_{28}$	12.5	48
Polyoxometalate ionic liquids:		
$[N(C_6H_{13})_4]_8[\alpha-SiW_{11}O_{39}]$	1000	51
$[N(C_7H_{15})_4]_8[\alpha-SiW_{11}O_{39}]$	25	51
$[N(C_8H_{17})_4]_8[\alpha-SiW_{11}O_{39}]$	50	51

 Table S1.
 Antibacterial activity (MIC) of POMs alone, POM-hybrids and nanocomposites against *E. coli*.