Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

# **Electronic Supplementary Information**

# Efficient synthesis of N-methyltetranitropyrrole – Stable, insensitive and high energy melt-castable material

*Vikranth Thaltiri*,<sup>*a,b*</sup> *Kurumurthy Chavva*,<sup>*b*</sup> *B. Sathish Kumar<sup><i>a*</sup> and Pradeepta K. *Panda*<sup>*a,b* \*</sup>

<sup>a</sup>School of Chemistry, University of Hyderabad, Hyderabad – 500046, India.

<sup>b</sup>Advance Centre of Research in High Energy Materials, University of Hyderabad, Hyderabad – 500046, India.

\*Email: <a href="mailto:pradeepta.panda@uohyd.ac.in">pkpsc@uohyd.ernet.in</a>

# Contents

| 1. | General experimental                              | S2         |
|----|---------------------------------------------------|------------|
| 2. | Crystal structure data for 1, 3a, 3b, 6           | S3-S6      |
| 3. | Computational study and isodesmic reaction        | <b>S</b> 8 |
| 4. | NMR spectra, CHN analysis, LCMS, HRMS and IR data | S9-S37     |
|    | of compounds                                      |            |
| 5. | Density by gas pycnometer                         | S38        |
| 6. | DSC-TGA                                           | S39        |
| 7. | Powder X-ray diffraction spectra                  | S40        |
| 8. | References                                        | S41        |

### 1. General Experimental

NMR spectra were recorded on a Bruker Avance-400 and 500 MHz FT NMR spectrometers using the solvent resonance as internal standard (<sup>1</sup>H NMR, CD<sub>3</sub>CN at 1.94 & 2.13 ppm, DMSO D<sub>6</sub> at 2.50 & 3.33 ppm; <sup>13</sup>C NMR, CD<sub>3</sub>CN at 1.32 & 118.26 ppm, DMSO D<sub>6</sub> at 39.52 ppm). Mass spectral determinations were carried out by Shimadzu-LCMS-2010 and Waters Xevo G-2XS QTOF spectrometer by ESI techniques. IR spectra were recorded on a Bruker Tensor II FT-IR spectrometer. Elemental (C, H, N) analysis were carried out using FLASH EA 1112 analyzer. Decomposition temperature was determined by DSC-TGA on SDT Q600 V20.9 Build 20 instrument. Powder X-ray diffraction was recorded on Bruker D8 Advance diffractometer (Bruker-AXS, Karlsruhe, Germany) using Cu-K $\alpha$  X-radiation ( $\lambda$  = 1.5406 Å) at 40 kV and 30 mA power. X-ray diffraction patterns were collected over the 20 range 5–50° at a scan rate of 3.9°/min. Crystallographic data for 1, 3a, 3b and 6 were collected on BRUKER APEX-II CCD microfocus diffractometer. Mo  $\alpha$  ( $\lambda = 0.71073$  Å) radiation was used to collect X-ray reflections on the single crystal. Data reduction was performed using Bruker SAINT<sup>S1</sup> software. Intensities for absorption were corrected using SADABS 2014/5.<sup>S2</sup> refined using SHELXL-2014/7<sup>S3</sup> with anisotropic displacement parameters for non-H atoms. Hydrogen atoms on O and N were experimentally located in difference electron density maps. All C-H atoms were fixed geometrically using HFIX command in SHELX-TL. A check of the final CIF file using PLATON<sup>S4</sup> did not show any missed symmetry.

Crystallographic data (including the structure factor files) for structures **1**, **3a**, **3b** and **6** in this paper have been deposited in the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1885801, 1885802, 1885803 and 1885804, respectively. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44(0)-1223-336033 or e-mail: <u>deposit@ccdc.cam.ac.uk</u>).

# 2. Crystal Structure Data

 Table S1. Crystal data and structure refinement for Compound 1.

| Identification code                      | 1                                                      |
|------------------------------------------|--------------------------------------------------------|
| Empirical formula                        | $C_5 H_3 N_5 O_8$                                      |
| Formula weight                           | 261.12                                                 |
| Temperature                              | 100(2) K                                               |
| Wavelength                               | 0.71073 Å                                              |
| Crystal system                           | Orthorhombic                                           |
| Space group                              | P b c a                                                |
| Unit cell dimensions                     | $a = 11.3262(5) \text{ Å} \qquad \alpha = 90^{\circ}.$ |
|                                          | $b = 10.6080(4) \text{ Å} \qquad \beta = 90^{\circ}.$  |
|                                          | $c = 15.3741(7) \text{ Å} \qquad \gamma = 90^{\circ}.$ |
| Volume                                   | 1847.17(14) Å <sup>3</sup>                             |
| Z                                        | 8                                                      |
| Density (calculated)                     | 1.878 Mg/m <sup>3</sup>                                |
| Absorption coefficient                   | 0.181 mm <sup>-1</sup>                                 |
| F(000)                                   | 1056                                                   |
| Crystal size                             | 0.24 x 0.20 x 0.18 mm <sup>3</sup>                     |
| Theta range for data collection          | 2.650 to 27.535°.                                      |
| Index ranges                             | -14<=h<=14, -13<=k<=13, -20<=l<=17                     |
| Reflections collected                    | 20200                                                  |
| Independent reflections                  | 2110 [R(int) = 0.0252]                                 |
| Completeness to theta = $25.242^{\circ}$ | 99.0 %                                                 |
| Absorption correction                    | Semi-empirical from equivalents                        |
| Max. and min. transmission               | 0.7456 and 0.6656                                      |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>            |
| Data / restraints / parameters           | 2110 / 0 / 164                                         |
| Goodness-of-fit on F <sup>2</sup>        | 1.066                                                  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0308, $wR2 = 0.0843$                            |
| R indices (all data)                     | R1 = 0.0333, $wR2 = 0.0862$                            |
| Extinction coefficient                   | n/a                                                    |
| Largest diff. peak and hole              | 0.349 and -0.263 e.Å <sup>-3</sup>                     |

 Table S2. Crystal data and structure refinement for Compound 3a.

| Identification code                      | 3a                                |                         |
|------------------------------------------|-----------------------------------|-------------------------|
| Empirical formula                        | $C_4 H_3 N_3 O_4$                 |                         |
| Formula weight                           | 157.09                            |                         |
| Temperature                              | 301(2) K                          |                         |
| Wavelength                               | 0.71073 Å                         |                         |
| Crystal system                           | Orthorhombic                      |                         |
| Space group                              | P 21 21 21                        |                         |
| Unit cell dimensions                     | a = 6.5935(11) Å                  | $\alpha = 90^{\circ}$ . |
|                                          | b = 7.7118(14) Å                  | $\beta = 90^{\circ}$ .  |
|                                          | c = 11.559(2)  Å                  | $\gamma = 90^{\circ}$ . |
| Volume                                   | 587.75(19) Å <sup>3</sup>         |                         |
| Ζ                                        | 4                                 |                         |
| Density (calculated)                     | 1.775 Mg/m <sup>3</sup>           |                         |
| Absorption coefficient                   | 0.161 mm <sup>-1</sup>            |                         |
| F(000)                                   | 320                               |                         |
| Crystal size                             | 0.18 x 0.14 x 0.08 mm             | <sub>n</sub> 3          |
| Theta range for data collection          | 3.557 to 25.651°.                 |                         |
| Index ranges                             | -8<=h<=7, -9<=k<=9                | , -14<=1<=14            |
| Reflections collected                    | 6178                              |                         |
| Independent reflections                  | 1091 [R(int) = 0.0203             | 5]                      |
| Completeness to theta = $25.242^{\circ}$ | 96.9 %                            |                         |
| Absorption correction                    | Semi-empirical from               | equivalents             |
| Max. and min. transmission               | 0.7454 and 0.6581                 |                         |
| Refinement method                        | Full-matrix least-squa            | tres on F <sup>2</sup>  |
| Data / restraints / parameters           | 1091 / 0 / 104                    |                         |
| Goodness-of-fit on F <sup>2</sup>        | 1.102                             |                         |
| Final R indices [I>2sigma(I)]            | R1 = 0.0246, wR2 = 0              | 0.0656                  |
| R indices (all data)                     | R1 = 0.0251, wR2 = 0              | 0.0661                  |
| Absolute structure parameter             | 0.5                               |                         |
| Extinction coefficient                   | n/a                               |                         |
| Largest diff. peak and hole              | 0.163 and -0.128 e.Å <sup>-</sup> | -3                      |

 Table S3. Crystal data and structure refinement for Compound 3b.

| Identification code                      | 3b                                 |                         |
|------------------------------------------|------------------------------------|-------------------------|
| Empirical formula                        | $C_4 H_3 N_3 O_4$                  |                         |
| Formula weight                           | 157.09                             |                         |
| Temperature                              | 100(2) K                           |                         |
| Wavelength                               | 0.71073 Å                          |                         |
| Crystal system                           | Orthorhombic                       |                         |
| Space group                              | P b c a                            |                         |
| Unit cell dimensions                     | a = 9.0328(6) Å                    | $\alpha = 90^{\circ}$ . |
|                                          | b = 10.8978(9) Å                   | $\beta = 90^{\circ}$ .  |
|                                          | c = 12.4228(10) Å                  | $\gamma = 90^{\circ}$ . |
| Volume                                   | 1222.87(16) Å <sup>3</sup>         |                         |
| Z                                        | 8                                  |                         |
| Density (calculated)                     | 1.707 Mg/m <sup>3</sup>            |                         |
| Absorption coefficient                   | 0.155 mm <sup>-1</sup>             |                         |
| F(000)                                   | 640                                |                         |
| Crystal size                             | 0.24 x 0.20 x 0.16 mm <sup>3</sup> |                         |
| Theta range for data collection          | 3.357 to 30.550°.                  |                         |
| Index ranges                             | -9<=h<=12, -15<=k<=15,             | -16<=l<=17              |
| Reflections collected                    | 10229                              |                         |
| Independent reflections                  | 1849 [R(int) = 0.0601]             |                         |
| Completeness to theta = $25.242^{\circ}$ | 98.7 %                             |                         |
| Absorption correction                    | Semi-empirical from equi           | valents                 |
| Max. and min. transmission               | 0.7461 and 0.6068                  |                         |
| Refinement method                        | Full-matrix least-squares of       | on F <sup>2</sup>       |
| Data / restraints / parameters           | 1849 / 0 / 101                     |                         |
| Goodness-of-fit on F <sup>2</sup>        | 1.024                              |                         |
| Final R indices [I>2sigma(I)]            | R1 = 0.0457, wR2 = 0.142           | 29                      |
| R indices (all data)                     | R1 = 0.0533, wR2 = 0.149           | 99                      |
| Extinction coefficient                   | 0.081(17)                          |                         |
| Largest diff. peak and hole              | 0.444 and -0.271 e.Å <sup>-3</sup> |                         |

**Table S4**. Crystal data and structure refinement for Compound 6.

| Identification code                      | 6                                                              |                         |
|------------------------------------------|----------------------------------------------------------------|-------------------------|
| Empirical formula                        | $C_5 \operatorname{H}_4 \operatorname{N}_4 \operatorname{O}_6$ |                         |
| Formula weight                           | 216.12                                                         |                         |
| Temperature                              | 100(2) K                                                       |                         |
| Wavelength                               | 0.71073 Å                                                      |                         |
| Crystal system                           | Orthorhombic                                                   |                         |
| Space group                              | P n m a                                                        |                         |
| Unit cell dimensions                     | a = 15.7046(10) Å                                              | $\alpha = 90^{\circ}$ . |
|                                          | b = 19.0277(10) Å                                              | $\beta = 90^{\circ}$ .  |
|                                          | c = 8.4560(5)  Å                                               | $\gamma = 90^{\circ}$ . |
| Volume                                   | 2526.8(3) Å <sup>3</sup>                                       |                         |
| Z                                        | 12                                                             |                         |
| Density (calculated)                     | 1.704 Mg/m <sup>3</sup>                                        |                         |
| Absorption coefficient                   | 0.158 mm <sup>-1</sup>                                         |                         |
| F(000)                                   | 1320                                                           |                         |
| Crystal size                             | 0.16 x 0.12 x 0.08 mm                                          | 3                       |
| Theta range for data collection          | 2.594 to 27.536°.                                              |                         |
| Index ranges                             | -20<=h<=20, -24<=k<                                            | =23, -10<=l<=10         |
| Reflections collected                    | 30783                                                          |                         |
| Independent reflections                  | 2938 [R(int) = 0.0341]                                         |                         |
| Completeness to theta = $25.242^{\circ}$ | 98.0 %                                                         |                         |
| Absorption correction                    | Semi-empirical from ed                                         | quivalents              |
| Max. and min. transmission               | 0.7456 and 0.6119                                              |                         |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>                    |                         |
| Data / restraints / parameters           | 2938 / 0 / 231                                                 |                         |
| Goodness-of-fit on F <sup>2</sup>        | 1.044                                                          |                         |
| Final R indices [I>2sigma(I)]            | R1 = 0.0356, wR2 = 0.                                          | 0885                    |
| R indices (all data)                     | R1 = 0.0376, $wR2 = 0.0899$                                    |                         |
| Extinction coefficient                   | n/a                                                            |                         |
| Largest diff. peak and hole              | 0.351 and -0.232 e.Å-3                                         |                         |

 Table S5: Representation of X-ray structures of compounds with capped stick model in two different side views:



**Color code:** grey = Carbon, white = Hydrogen, blue = Nitrogen and red = Oxygen.

## 3. Computational study and isodesmic reaction

Theoretical calculation was performed using Gaussian 09 program provided by CMSD facility of University of Hyderabad.<sup>S5</sup> The geometric optimization of the structures and frequency analyses were carried out using B3LYP functional with 6-31G+(d, p) basis set. The optimized geometry was a minimum on the potential-energy surface and no imaginary frequencies were found. The method of isodesmic reaction has been employed to calculate HOF from total energies obtained from DFT calculations. Crystal packing density was predicted by the molecular packing calculations using CVFF force field in the polymorph module of Material Studio Suite.<sup>S6</sup> Based on the predicted densities and HOFs, using Explo5 *version* 6.03,<sup>S7</sup> the detonation velocity (*D*) and detonation pressure (*P*) for the energetic materials are calculated.

| Compound                  | OB <sup>a</sup>   | $ ho^{b}$             | <b>D</b> <sub>v</sub> <sup>c</sup> | <b>P</b> <sup>d</sup> | $\Delta H_{\rm f}^{\ e}$ |
|---------------------------|-------------------|-----------------------|------------------------------------|-----------------------|--------------------------|
|                           | (%)               | (g cm <sup>-3</sup> ) | (m s <sup>-1</sup> )               | (GPa)                 | (kJ mol <sup>-1</sup> )  |
| 1                         | -21.44            | 1.90                  | 8851                               | 36.13                 | 99.7                     |
| <sup>'a'</sup> Oxygen ba  | lance, 'b' Calcu  | lated density, '      | c' Detonation v                    | elocity (calcul       | ated with                |
| Explo5 version            | on 6.03), 'd' Det | onation pressu        | re (calculated v                   | vith Explo5 ver       | rsion 6.03),             |
| <sup>e'</sup> Heat of for | mation.           | -                     |                                    | -                     |                          |

 Table S5. Theoretical energetic properties of 1.

#### **Isodesmic reaction for compound 1**



4. NMR spectra, Elemental analysis, LCMS, HRMS and IR data of compounds:



Figure S1: <sup>1</sup>H NMR spectrum of **3a** in dimethyl sulfoxide- $d_6$ .



Figure S2: <sup>13</sup>C NMR spectrum of 3a in dimethyl sulfoxide- $d_6$ .



Figure S3: Elemental analysis of 3a.



Figure S4: HRMS of 3a.



Figure S5: IR spectrum of 3a.



Figure S6: <sup>1</sup>H NMR spectrum of **3b** in dimethyl sulfoxide- $d_6$ .



Figure S7: <sup>13</sup>C NMR spectrum of **3b** in dimethyl sulfoxide-*d*<sub>6</sub>.



Figure S8: Elemental analysis of 3b.



Figure S9: HRMS of 3b.



Figure S10: IR spectrum of 3b.



Figure S11: <sup>1</sup>H NMR spectrum of 2 in dimethyl sulfoxide-*d*<sub>6</sub>.



Figure S12: <sup>13</sup>C NMR spectrum of 2 in dimethyl sulfoxide- $d_6$ .



Figure S13: Elemental analysis of 2.

#### LCMS-2010A DATA REPORT SHIMADZU



Figure S14: LCMS of 2.



Figure S15: IR spectrum of 2.



Figure S16: <sup>1</sup>H NMR spectrum of 1 in acetonitrile- $d_3$ .



Figure S17: <sup>13</sup>C NMR spectrum of 1 in acetonitrile- $d_3$ .



Figure S18: <sup>15</sup>N NMR spectrum of 1 in acetonitrile- $d_3$ .



Figure S19: Elemental analysis of 1.



Figure S20: LCMS of 1.



Figure S21: IR Spectrum of 1.



Figure S22: <sup>1</sup>H NMR spectrum of 6 in acetonitrile- $d_3$ .



Figure S23:  $^{13}$ C NMR spectrum of 6 in acetonitrile- $d_3$ .



Figure S24: Elemental analysis of 6.



Figure S25: LCMS of 6.



Figure S26: IR Spectrum of 6.



Figure S27: <sup>1</sup>H NMR spectrum of 7 in acetonitrile-*d*<sub>3</sub>.



**Figure S28:** <sup>13</sup>C NMR spectrum of **7** in acetonitrile- $d_3$ .



Figure S29: HRMS spectrum of 7.

# 5. Density by Gas Pycnometer for Compound 1



QUANTACHROME CORPORATION Upyc 1200e V5.06 Analysis Report

|                       |                       |         | Anarysts   | Report |
|-----------------------|-----------------------|---------|------------|--------|
| Tue Nov 2<br>User ID: | 1 04:28:28 2017<br>QA |         |            |        |
| Sample Pa             | rameters              |         |            |        |
| Samp.                 | le ID: TVK-21-        | 11-17   |            |        |
| Weigl                 | ht: 0.5088 g          |         |            |        |
| Desc:                 | ription:              |         |            |        |
| Comm                  | ent:                  |         |            |        |
| Analysis              | Parameters            |         |            |        |
| Cell                  | Size - Small          |         |            |        |
| V Add                 | ded - Small: 12       | .8451   | cc         |        |
| V Ce.                 | 11: 12.7197 cc        |         |            |        |
| Anal                  | ysis Temperatur       | e: 24.  | 4 C        |        |
| Targe                 | et Pressure: 7.       | 0 psig  |            |        |
| Type                  | of gas used: H        | elium   |            |        |
| Equi                  | libration Time:       | Auto    |            |        |
| Flow                  | Purge: 1.0 mi         | n.      |            |        |
| Maxin                 | num Runs: 15          |         |            |        |
| Numbe                 | er Of Runs Aver       | aged:   | 3          |        |
| Devi                  | ation Requested       | : 0.00  | 50 %       |        |
| Analysis              | Results               |         |            |        |
| Devi                  | ation Achieved:       | 0.350   | 2 %        |        |
| Avera                 | age Volume: 0.2       | 638 cc  |            |        |
| Volu                  | me Std. Dev.: 0       | .0010   | cc         |        |
| Avera                 | age Density: 1.       | 9286 g. | /cc        |        |
| Dens                  | ity Std. Dev.:        | 0.0072  | g/cc       |        |
| Coef                  | ficient of Vari       | ation:  | 0.3720 %   |        |
|                       | Run                   | Data    |            |        |
| RUN                   | VOLUME                | (cc)    | DENSITY (g | /cc)   |

| RUN | VOLUME (CC) | DENSITY (g/cc) |
|-----|-------------|----------------|
| 1   | 0.2636      | 1.9299         |
| 2   | 0.2513      | 2.0245         |
| 3   | 0.2505      | 2.0308         |
| 4   | 0.2695      | 1.8881         |
| 5   | 0.2545      | 1.9996         |
| 6   | 0.2524      | 2.0155         |
| 7   | 0.2521      | 2.0180         |
| 8   | 0.2528      | 2.0128         |
| 9   | 0.2522      | 2.0172         |
| 10  | 0.2528      | 2.0125         |
| 11  | 0.2610      | 1.9491         |
| 12  | 0.2794      | 1.8207         |
| 13  | 0.2644      | 1.9241         |
| 14  | 0.2646      | 1.9231         |
| 15  | 0.2624      | 1.9388         |

Figure S30: Density measured for 1 by gas pycnometer at 25 °C.



## 6. DSC-TGA of Compound 1

Figure S31: Thermal behavior of Compound 1

## 7. Powder X-ray diffraction spectra of Compound 1



Figure S32: Powder X-ray diffraction of bulk sample of Compound 1.



- (a) Simulated PXRD pattern of compound **1** from crystal data recorded at 100 K (this work).
- (b) Simulated PXRD pattern of compound 1 at 297 K from crystal data reported by Cromer *et al.*<sup>S8</sup>

#### 8. References

- S1. SAINT version 8.34A, Bruker AXS, 2014.
- S2. G. M. Sheldrick, SADABS 2014/5, *Program for Empirical Absorption Correction of Area Detector Data*, University of Göttingen, Germany, 2014.
- S3. SHELXL -version 2014/7; *Program for the Solution and Refinement of Crystal Structures*, University of Göttingen, Germany, 2014.
- S4. (a) A. L. Spek, *PLATON, A Multipurpose Crystallographic Tool*, Utrecht University, Utrecht, The Netherlands, 2002. (b) A. L. Spek, *J. Appl. Cryst.* 2003, *36*, 7.
- S5. Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- S6. M. D. Segall, P. J. D, Lindan, M. J. al. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys.: Condens. Matter., 2002, 14, 2717.
- S7. EXPLO5 version 6.02, M. Suceska, 2014.
- S8. D. T. Cromer, M. D. Coburn, R. R. Ryan and H. J. Wasserman, Acta Cryst. C, 1986, 42, 1428.