Electronic Supporting Information for New Journal of Chemistry:

ESIPT-based fluorescent probe for cysteine sensing with large Stokes shift over homocysteine and glutathione and its application in living cells

Peng Zhang^a, Yuzhe Xiao^a, Qian Zhang^a, Zixuan Zhang^a, Hongwei Yu^b and Caifeng Ding^a*

^aKey Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.

^bQingdao Municipal Center for Disease Control & Prevention, Qingdao 266033, PR China.

*E-mail: <u>dingcaifeng2003@163.com,</u>

Contents

1. ¹ H NMR and ¹³ C NMR spectra (Figures S1-S4)	S-2
2. Table S1	S-4
3. Figures S5 & S6	S-6
4. Figures S7 & S8	S-7
5. Figures S9 & S10	S-8
6. Figures S11 & S12	S-9
7. Figures S13 & References	S-10

1. ¹H, ¹³C NMR and HRMS spectra

Figure S1. ¹H NMR spectrum (500 MHz) of HBTA in DMSO-*d*₆.

Figure S2. ¹H NMR spectrum (500 MHz) of HBTA-MVK in DMSO-*d*₆.

Figure S3. ¹H NMR spectrum (600 MHz) of ABT-MVK in DMSO-*d*₆.

Figure S4. ¹³C NMR spectrum (151 MHz) of ABT-MVK in DMSO-*d*₆.

Probe	Analyte	Stokes	LOD	Spectral	Biological	Ref.
-		shift		change	application	
	Cys; Hcy	60		Off-on	Human plasma	[1]
	Нсу	32	1.88 μM	Off-on	Human plasma	[2]
	Cys	71		Off-on		[3]
-N CO ₂ Et	Cys; GSH	80 30	0.11 μM 5.0 nM	Off-on	HeLa Cells	[4]
CI S- Et ₂ N - O O	Cys; GSH	60 70	0.4 mM 0.05 μM	Off-on	COS-7 cells	[5]
	Cys	168		Ratio	HeLa Tissue slices	[6]
	Cys	130	1.4 μM	Ratio	HeLa, Zebrafish	[7]
O N O HN CHO	Cys; Hcy	85		Off-on	Tetrahyme na thermophil a cells	[8]
OF SOUTH OF	Cys	<i>ca</i> . 210	88.0 nM	Off-on	MDA-MB -231 cells, mice	[9]
J C C C C C C C C C C C C C C C C C C C	Cys	55	122 nM	Ratio	A549/ Hela cells	[10]

Table S1. Fluorescent probes for the detection of biothiols.

	Cys	<i>ca</i> . 100	1.26 µM	Off-on	HeLa cells	[11]
HOLE CONTRACTOR	Cys; Hcy	75		Ratio	HepG2 cells	[12]
	Cys	ca. 42		Off-on	PC-12 cells	[13]
	Cys; Hcy	51	16 μM 18 μM	Ratio	HepG2 cells	[14]
Ph N B F F	Cys	25	0.38 nM	Off-on	HeLa cells	[15]
	Cys	ca. 45	84 nM	Ratio	Hela cells	[16]
	Cys; GSH	<i>ca</i> . 160	90 nM	Off-on	Hela cells	[17]
	Cys; Hcy	<i>ca</i> . 140		Ratio	Hela cells	[18]
	Cys	40	0.19 μΜ	Off-on	HeLa cells	[19]
	Cys	200		Ratio	HeLa cells	[20]
	Cys	225	19 nM	Off-on	HeLa cells	this work

Figure S5. The stability of ABT-MVK (10 μ M) in PBS buffer with (black triangles) or without (red triangles) 370 nm light irritation.

Figure S6. Job plot of Cys binding to ABT-MVK in 10 mM PBS buffer, measured by fluorescence spectra.

Figure S7. The limit of detection for Cys by fluorescence of ABT-MVK at 10 μ M. The limit of detection was calculated to be 19 nM.

Figure S8. HRMS spectra of ABT-MVK before (a) and after (b) treated with Cys in 10 mM PBS buffer. [ABT-MVK] = [Cys] = 10 μ M.

Figure S9. Fluorescence intensity of ABT-MVK at 595 nm in 10 mM PBS buffer pH 8.0 in the presence of 20 μ M Cys upon addition of 50 μ M of competition anions, such as F⁻, Cl⁻, I⁻, Ac⁻, NO₃⁻, CO₃²⁻, S²⁻, and HSO₃⁻. [ABT-MVK] = 10 μ M, $\lambda_{ex} = 370$ nm.

Figure S10. Fluorescence intensity of ABT-MVK at 595 nm in 10 mM PBS buffer pH 8.0 in the presence of 20 μ M Cys upon addition of 50 μ M of competition cations, such as Na⁺, K⁺, Mg²⁺, Ca²⁺, Ni²⁺, Zn²⁺, Co²⁺, Pb²⁺, Fe³⁺, Al³⁺ and Cu²⁺. [ABT-MVK] = 10 μ M, $\lambda_{ex} = 370$ nm.

Figure S11. Fluorescence intensity of ABT-MVK at 595 nm in 10 mM PBS buffer pH 8.0 in the presence of 20 μ M Cys upon addition of 50 μ M competition amino acids, 1-17: Free, Ala, Asp, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Pro, Ser, Thr, Val, Hcy and GSH. [ABT-MVK] = 10 μ M, $\lambda_{ex} = 370$ nm.

Figure S12. Fluorescence spectra of ABT-MVK, ABT-MVK+Cys, ABT-MVK+Cu²⁺, ABT-MVK+Cu²⁺+Cys and ABT-MVK+Cu²⁺+EDTA+Cys in 10 mM PBS buffer. [ABT-MVK] = 10 μ M, λ_{ex} = 370 nm.

Figure S13. Cytotoxicity of ABT-MVK against HeLa cells as determined by CCK-8 assay: HeLa cells were treated with ABT-MVK (2-50 μ M) for 2 hours.

References

[1] O. Rusin, N. N. St Luce, R. A. Agbaria, J. O. Escobedo, S. Jiang, I. M. Warner, F.

B. Dawan, K. Lian, R. M. Strongin, J. Am. Chem. Soc. 2004, 126, 438-439.

[2] A. Barve, M. Lowry, J. O. Escobedo, J. Thainashmuthu, R. M. Strongin, J. Fluoresc. 2016, 26, 731-737.

- [3] X. F. Yang, Y. X. Guo, R. M. Strongin, Org. Biomol. Chem. 2012, 10, 2739-2741.
- [4] Y. Q. Tang, L, Y. Jin, B. Z. Yin, Anal. Chim. Act. 2017, 993, 87-95.

[5] J.Liu, Y. Q.Sun, Y.Huo. J. Am. Chem. Soc. 2014, 136, 2, 574-577.

[6] W. F.Niu., L.Guo, Y. H.Li, Anal. Chem. 2016, 88, 1908-1914.

[7] L. W.He, X. L.Yang, K. X.Xu, Anal. Chem. 2017, 89, 9567-9573.

[8] P. Wang, J.Liu, X.Lv, Y. L. Liu, Y. Zhao, W.Guo, Orga. Let, 2012, 14, 520-523.

[9] M. M.Zhang, L.Wang, Y. Y.Zhao, F. Q.Wang, J. D.Wu, G. L. Liang. Anal. Chem. 2018, 90, 4951-4954.

[10] X.Xie, C.Yin, Y.Yue, 2018, 267, 76-82.

[11] Y. S. Guan, L. Y. Niu, Y. Z. Chen, L. Z. Wu, Q. Z. Yang, RCS Adv, 2014, 4, 8360-8364.

[12] L. Yuan, W. Lin, Y. Xie, S. Zhu, S. Zhao, Chem. Eur. J. 2012, 18,14520-14526.

- [13] H. Wang, G. Zhou, H. Gai, X. Chen, Chem. Commun. 2012, 48, 8341-8343.
- [14] H. Lv, X. F. Yang, Y. Zhong, Y. Guo, Z. Li, H. Li, Anal. Chem. 2014, 86, 1800-1807.
- [15] Y. Liu, X. Lv, M. Hou, Y. Shi, W. Guo, Anal. Chem. 2015, 87, 11475-11483.
- [16] X. Zhang, Y. Hang, W. Qu, Y. Yan, P. Zhao, J. Hua, RSC. Adv. 2016, 6, 20014-20020.
- [17] D. Zhang, Z. Yang, H. Li, Z. Pei, S. Sun, Y. Xu, Chem. Commun. 2016, 52, 749-752.
- [18] P. Das, A. K. Mandal, N. B. Chandar, M. Baidya, H. B. Bhatt, B. Ganguly, S. K.Ghosh, A. Das, Chem. Eur. J. 2012, 18, 15382-15393
- [19] H. Chen, Y. Tang, M. Ren, W. Lin, Chem. Sci. 2016, 7, 1896-1903
- [20] S Yang, C. C. Guo, Y. Li, J. R. Guo, J. Xiao, Z. H. Qing, J. S. Li, and R. H. Yang, ACS Sens. 2018,3, 2415–2422.