Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Honeycomb-like ZnO/SnO₂ nanocomposite at nickel foam for high-

performance asymmetric supercapacitors

Awais Ali^a, Muhammad Ammar^{a,c,*}, Zaid Yahya^a, Muhammad Waqas^{b,c}, Muhammad Ali Jamal^a

Esmail Husein M Salhabic,d

^a Department of Chemical Engineering Technology, Government College University, Faisalabad 38000, Pakistan.

^b Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China

^c University of Chinese Academy of Sciences, Beijing, 100049, China.

^d Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

* Corresponding author: mammar@gcuf.edu.pk (M. Ammar), Tel/Fax: +92419203027

Supplementary Information

Fig. S1 SEM Images at different magnification: (a-c) ZnO (d-f) SnO₂.

Fig. S2 N₂ adsorption-desorption isotherm of ZnO/SnO₂ nanocomposite (A), BJH pore size distribution of ZnO/SnO₂ nanocomposite (B).

Fig. S3 TGA of ZnO/SnO_2 nanocomposite.

Fig. S4 SEM Images at different magnification after 7000 GCD.

Fig. S5 Nyquist plot of ZnO, SnO₂ and ZnO/SnO₂ in 3M KOH.

Fig. S6 Electrochemical performance of AC@NF in a 3M KOH electrolyte: (a) CV curves of ZNCO and AC@NF at 20 mV s⁻¹ (b) GCD of AC@NF at current density of 1 to 5 A g⁻¹ and (c) CV curves of AC@NF at different scan rate from 10 to 100 mV s⁻¹.

Electrode	Electrolyte	Current density	Scan rate (mV s ⁻¹)	Specific capacitance/ Capacity	Ref.
NiO/ZnO	3 M KOH	1 A g ⁻¹		976 F g ⁻¹	1
ZnO/rGO	1M Na ₂ SO ₄	-	10	95 F g ⁻¹	2
ZnO-MnO ₂	1M Na ₂ SO ₄	0.5 A g ⁻¹	-	423 F g ⁻¹	3
MnO ₂ -ZnO	0.1M Na ₂ SO ₄	-	2	571 μF cm ⁻²	4
Core-shell ZnO-NiO	1 M KOH	5 mA cm ⁻²	-	4.1 F cm ⁻²	5
ZnO-NiO	1 M KOH	5 mA cm ⁻²	-	0.5 F cm ⁻²	5
ZnO-NiO	3 M KOH	-	5.8	649 F g ⁻¹	6
Sn2O/G	6M KOH	-	5	818.6 F g ⁻¹	7
SnO ₂ /SWCNT	1 M Na ₂ SO ₄		6	320	8
SnO ₂ /Graphene	1 M Na ₂ SO ₄		5	363.3	9
ZnO/SnO ₂	3 M KOH	1	-	2,307 F g ⁻¹	This work

Table S1. Comparison of several Zinc and Tin oxide based electrode materials in the literature and this study.

References

- 1. D. Zhu and Y. Shao, Int. J. Electrochem. Sc., 2018, 13, 3601-3612.
- 2. I. Y. Bu and R. Huang, *Mater. Sci. Semicond. Process.*, 2015, **31**, 131-138.
- M. Huang, F. Li, X. L. Zhao, D. Luo, X. Q. You, Y. X. Zhang and G. Li, *Electrochim*. *Acta*, 2015, 152, 172-177.
- 4. X. Zhou and L. Ma, *Thin Solid Films*, 2015, **597**, 44-49.
- 5. C. Wei, H. Pang, C. Cheng, J. Zhao, P. Li and Y. Zhang, *CrystEngComm*, 2014, **16**, 4169-4175.
- H. Pang, Y. Ma, G. Li, J. Chen, J. Zhang, H. Zheng and W. Du, *Dalton Trans.*, 2012, 41, 13284-13291.
- V. Velmurugan, U. Srinivasarao, R. Ramachandran, M. Saranya and A. N. Grace, *Mater. Res. Bull.*, 2016, 84, 145-151.
- 8. S. Ren, Y. Yang, M. Xu, H. Cai, C. Hao and X. Wang, *Colloids Surf.*, 2014, 444, 26-32.
- H. Su, T. Wang, S. Zhang, J. Song, C. Mao, H. Niu, B. Jin, J. Wu and Y. Tian, Solid State Sci., 2012, 14, 677-681.