Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Chloride carbodiimide K12Pb51(CN2)30Cl54 with an unprecedented 45 Å

unit cell axis and a large birefringence

Xianghe Meng,^{a,c} Fei Liang,^{a,c} Wenlong Yin,*^b Zheshuai Lin^a, and Mingjun Xia,*^a

[a] Beijing Center for Crystal Research and Development, Key Laboratory of Functional

Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese

Academy of Sciences, Beijing 100190, China

[b] Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang

621900, China

[c] University of Chinese Academy of sciences, Beijing 100049, China

Experimental Section

Single crystal structure determination. The single-crystal X-ray diffraction data was gathered on a Rigaku AFC10 single-crystal diffractometer equipped with graphite-monochromatic Mo K α radiation (λ = 0.71073 Å) and Saturn CCD detector at 120 K for **1**. The intensity data, data reduction and cell refinement were captured by the CrystalClear program. The crystal structure was settled by the direct method with grogram SHELXS-2017 and further refined by full matrix least squares on *F*² by SHELXL-2017 programs.¹ The structure was confirmed by using the ADDSYM algorithm from the program PLATON with no higher symmetry was discovered.² The crystallographic data and refinement are summarized in Table S1. The fractional atomic coordinates and equivalent isotropic displacement parameters are given in Table S2. The atomic displacement parameters are listed in Table S3. The bond lengths and angles are presented in Table S4.

Elemental analysis. The target crystal was carefully selected on the sample platform and measured using a field-emission scanning electron microscope (Hitachi S-4800) equipped with an energy-dispersive spectrometry detector.

Scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis. The morphology of the crystals is analyzed by field emission scanning electron microscopy (SEM, Hitachi S-4800) at an accelerating voltage of 10 kV, and the energy-dispersive X-ray spectroscopy (EDS) was used to analyze the elemental distribution. **Thermal analysis.** The different scanning calorimetry (DSC) analysis was performed on NETZSCH STA 409 CD thermal analyzer under N_2 flow with a sample heating rate of 20 °C/min from room temperature to 700 °C.

Powder X-ray diffraction. The powder X-ray diffraction (PXRD) data of **1** was collected on Bruker D8 Focus diffractometer equipped with Cu K α radiation(λ =1.5418 Å) in the 20 range of 7-70° at room temperature.

UV-vis-NIR diffuse reflectance spectrum. The UV-vis-NIR diffuse reflectance spectra was measured in the range 200 nm to 1200 nm by a Perkin-Elmer Lambda 900 UV-vis-NIR spectrometer.

Infrared spectrum. Infrared (IR) spectroscopy was collected on a Varian Excalibur 3100 spectrometer at the range from 400 cm⁻¹ to 4000 cm⁻¹. **1** and KBr samples with mass ratio about 1:100 were mixed thoroughly and rolled into transparent sheets for testing.

First principles computational method. The first-principles calculations were performed at the atomic level in the framework of density functional theory (DFT) for **1** crystal implemented in CASTEP program³, which has been applied on metal cyanurates successfully in previous work⁴. The total energy and energy band calculations with fixed cell constants using generalized gradient approximation (GGA-PBE)⁵ and hybrid HSE06 exchange-correlation potentials⁶ were performed, and the ion-electron interactions were modeled by the ultra-soft pseudopotentials⁷ for all elements, including K 3s²3p⁶4s¹, Cd 4d¹⁰5s², C 2s²2p², N 2s²2p³ and O 2s²2p⁴ valence electrons, respectively. In order to ensure the sufficient accuracy of the calculated results, the kinetic energy cutoff of 500 eV

and Monkhorst-Pack k-point meshes⁸ spanning less than 0.04Å⁻³ in the Brillouin zone were chosen. In addition, a scissors operator was adopted as the difference between the HSE06 and PBE bandgaps to obtain linear optical properties.

Figure S1. Experimental and calculated XRD patterns of 1.

Figure S2. The stack arrangements of the twelve Pb layers along c axis in **1**.

Figure S3. The rotation of Pb^{2+} cations along *c* axis.

Figure S4. The unit cell parameters of the reported carbodiimides.

Figure S5. Crystal structures of (a) $LiY(CN_2)_2$, (b) $LiLa(CN_2)_2$, (c) $Ba_4Mg(CN_2)_4F_2$, (d) $LiPr_2(CN_2)_2F_3$ and (e) **1**. (f) The coordination environment of CN_2 in **1**.

Figure S7. SEM images of 1.

Figure S8. DSC curves for 1.

Figure S9. (a) Arrangement of CN_2 groups along *c* axis and (b) projection of the CN_2 units at *ab* plane.

Formula	K ₁₂ Pb ₅₁ (CN ₂) ₃₀ Cl ₅₄
Mr	14151.09
Crystal system	trigonal
Space group	R3m
a, c (Å)	10.3072 (4), 45.528 (3)
α,γ (°)	90, 120
V/ Å ³	4188.8 (4)
Z	1
Crystal size (mm)	0.08 × 0.05 × 0.04
µ (mm−1)	52.23
Rint	0.060
F(000)	5928
p _{calc} g/cm ³	5.610
Data/restraints/parameters	1122/0/78
Goodness-of-fit on F ²	1.162
Final R indexes [I>=2σ (I)]	R ₁ = 0.0217, wR ₂ = 0.0527
Final R indexes [all data]	R ₁ = 0.0221, wR ₂ = 0.0530

Table S1. Crystal data and structural refinements for 1.

 ${}^{a}\mathsf{R}_{1}=\sum ||F_{0}|-|F_{c}|| / \sum |F_{0}|$ and ${}^{w}\mathsf{R}_{2}=\left[\sum \left[w(F_{0}{}^{2}-F_{c}{}^{2})^{2}\right] / \sum \left[w(F_{0}{}^{2})^{2}\right]\right]^{\frac{1}{2}}$ for $F_{0}{}^{2}>2\sigma(F_{c}{}^{2})$

	x	У	Z	U _{iso} */U _{eq}
Pb1	0.13212 (2)	0.86788 (2)	0.20176 (2)	0.00803 (11)
Pb2	0.54138 (2)	0.08275 (4)	0.28049 (2)	0.01203 (11)
Pb3	0.000000	0.000000	0.12979 (2)	0.00848 (13)
Pb4	0.000000	0.000000	0.27164 (2)	0.01042 (14)
Pb5	0.166667	0.833333	0.333333	0.0086 (2)
K5	0.166667	0.833333	0.333333	0.0086 (2)
K1	0.333333	0.666667	0.23257 (6)	0.0036 (5)
CI1	0.19359 (13)	0.80641 (13)	0.26972 (5)	0.0172 (5)
CI2	0.48777 (14)	0.51223 (14)	0.20335 (5)	0.0209 (5)
CI3	-0.14678 (15)	0.7064 (3)	0.31714 (5)	0.0199 (5)
C1	-0.166667	0.666667	0.166667	0.006 (2)
C2	0.8363 (5)	0.1637 (5)	0.24342 (16)	0.0076 (16)
C3	0.666667	0.333333	0.333333	0.012 (4)
N1	0.7697 (4)	0.2303 (4)	0.25105 (15)	0.0084 (14)
N2	-0.0988 (4)	0.8024 (8)	0.17183 (14)	0.0056 (13)
N3	-0.0984 (4)	0.8033 (8)	0.23505 (15)	0.0090 (14)
N4	0.666667	0.333333	0.3064 (3)	0.007 (2)

Table S2. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) for **1**.

Atom	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Pb1	0.00605(14)	0.00605 (14)	0.01242 (18)	0.00336 (12)	-0.00037 (5)	0.00037 (5)
Pb2	0.01149(15)	0.00835 (18)	0.01519 (18)	0.00417 (9)	0.00075 (6)	0.00150 (11)
Pb3	0.00810(18)	0.00810 (18)	0.0092 (3)	0.00405 (9)	0.000	0.000
Pb4	0.01251(19)	0.01251 (19)	0.0062 (3)	0.00626 (9)	0.000	0.000
Pb5	0.0071 (3)	0.0071 (3)	0.0055 (4)	-0.0011 (4)	-0.00164 (18)	0.00164 (18)
K5	0.0071 (3)	0.0071 (3)	0.0055 (4)	-0.0011 (4)	-0.00164 (18)	0.00164 (18)
K1	0.0010 (8)	0.0010 (8)	0.0089 (13)	0.0005 (4)	0.000	0.000
CI1	0.0173 (8)	0.0173 (8)	0.0179 (10)	0.0094 (9)	0.0014 (4)	-0.0014 (4)
CI2	0.0159 (8)	0.0159 (8)	0.0334 (13)	0.0099 (10)	0.0045 (5)	-0.0045 (5)
CI3	0.0190 (8)	0.0239 (12)	0.0186 (11)	0.0119 (6)	0.0032 (5)	0.0064 (9)
C1	0.007 (4)	0.009 (6)	0.004 (5)	0.005 (3)	0.002 (2)	0.004 (4)
C2	0.008 (3)	0.008 (3)	0.002 (3)	0.001 (4)	-0.0007 (15)	0.0007 (15)
C3	0.008 (6)	0.008 (6)	0.021 (12)	0.004 (3)	0.000	0.000
N1	0.007 (2)	0.007 (2)	0.011 (3)	0.004 (3)	-0.0016 (14)	0.0016 (14)
N2	0.007 (2)	0.003 (3)	0.006 (3)	0.0013 (17)	0.0001 (13)	0.000 (3)
N3	0.006 (2)	0.010 (4)	0.012 (3)	0.0051 (19)	-0.0006 (14)	-0.001 (3)
N4	0.009 (4)	0.009 (4)	0.004 (6)	0.0046 (18)	0.000	0.000

Table S3. Anisotropic displacement parameters (Å²) for $\boldsymbol{1}.$

Pb1—N2 ⁱ	2.524 (4)	Pb5—Cl3 ^{viii}	2.9098 (12)
Pb1—N2	2.524 (4)	Pb5—Cl1	2.936 (2)
Pb1—N3 ⁱ	2.608 (4)	Pb5—Cl1 ^{vii}	2.936 (2)
Pb1—N3	2.608 (4)	K1—CI1 ^{ix}	3.014 (3)
Pb2—N1	2.463 (4)	K1—CI1 ^V	3.014 (3)
Pb2—N1 ⁱⁱ	2.464 (4)	K1—Cl1	3.014 (3)
Pb2—N4	2.529 (5)	K1—Cl2 ^{ix}	3.061 (3)
Pb3—N2 ^V	2.603 (7)	K1—Cl2 ^V	3.061 (3)
Pb3—N2 ^{vi}	2.603 (6)	K1—Cl2	3.061 (3)
Pb3—N2 ^{iv}	2.603 (6)	C1—N2 ^X	1.234 (7)
Pb4—N3 ^{iv}	2.420 (7)	C1—N2	1.234 (7)
Pb4—N3 ^{vi}	2.420 (7)	C2—N3 ⁱⁱⁱ	1.228 (11)
Pb4—N3 ^V	2.420 (7)	C2—N1	1.238 (11)
Pb5—Cl3 ⁱ	2.9097 (12)	C3—N4	1.227 (12)
Pb5—Cl3	2.9098 (12)	C3—N4 ^{xi}	1.227 (12)
Pb5—Cl3 ^{vii}	2.9098 (12)		
N2 ⁱ —Pb1—N2	74.5 (3)	Pb2 ^{XV} —N1—Pb2	103.7 (3)
N2 ⁱ —Pb1—N3 ⁱ	68.20 (18)	C1—N2—Pb1 ^{xiv}	109.3 (2)
N2—Pb1—N3 ⁱ	109.5 (2)	C1—N2—Pb1	109.3 (2)
N2 ⁱ —Pb1—N3	109.5 (2)	Pb1 ^{xiv} —N2—Pb1	108.0 (2)
N2—Pb1—N3	68.21 (18)	C1—N2—Pb3 ^{xii}	121.7 (4)

Table S4. Selected bond lengths and bond angles for 1.

N3 ⁱ —Pb1—N3	71.3 (3)	Pb1 ^{xiv} —N2—Pb3 ^{xii}	103.88 (18)
N1—Pb2—N1 ⁱⁱ	80.5 (3)	Pb1—N2—Pb3 ^{xii}	103.88 (18)
N1—Pb2—N4	77.3 (2)	C2 ^{xiii} —N3—Pb4 ^{xii}	118.4 (5)
N1 ⁱⁱ —Pb2—N4	77.3 (2)	C2 ^{xiii} —N3—Pb1	113.0 (3)
N2 ^v —Pb3—N2 ^{vi}	71.9 (2)	Pb4 ^{xii} —N3—Pb1	103.9 (2)
N2 ^V —Pb3—N2 ^{iV}	71.9 (2)	C2 ^{xiii} —N3—Pb1 ^{xiv}	113.0 (3)
N2 ^{Vİ} —Pb3—N2 ^{iV}	71.9 (2)	Pb4 ^{xii} —N3—Pb1 ^{xiv}	103.9 (2)
N3 ^{iv} —Pb4—N3 ^{vi}	77.9 (3)	Pb1—N3—Pb1 ^{xiv}	103.1 (2)
N3 ^{iv} —Pb4—N3 ^v	77.9 (3)	C3—N4—Pb2	117.8 (2)
N3 ^{VI} —Pb4—N3 ^V	77.9 (3)	C3—N4—Pb2 ^{XV}	117.8 (2)
N2 ^x —C1—N2	180.0	Pb2—N4—Pb2 ^{XV}	100.0 (3)
N3 ⁱⁱⁱ —C2—N1	178.2 (8)	C3—N4—Pb2 ⁱⁱ	117.8 (2)
N4—C3—N4 ^{xi}	180.0	Pb2—N4—Pb2 ⁱⁱ	100.0 (3)
C2—N1—Pb2 ^{XV}	115.7 (3)	Pb2 ^{xv} —N4—Pb2 ⁱⁱ	100.0 (3)
C2—N1—Pb2	115.7 (3)		

Symmetry codes: (i) -y+1, x-y+2, z; (ii) -x+y+1, -x+1, z; (iii) -x+y, -x, z; (iv) x, y-1, z; (v) -y+1, x-y+1, z; (vi) -x+y-1, -x, z; (vii) -x+1/3, -y+5/3, -z+2/3; (viii) y-2/3, -x+y-1/3, -z+2/3; (ix) -x+y, -x+1, z; (x) -x-1/3, -y+4/3, -z+1/3; (xi) -x+4/3, -y+2/3, -z+2/3; (xii) x, y+1, z; (xiii) -y, x-y, z; (xiv) -x+y-1, -x+1, z; (xv) -y+1, x-y, z.

Formula	Space		Unit cell dimensions	
	group	a/ Å	b/ Å	c/ Å
MgCN ₂	R 3m	3.2734(1)	3.2734(1)	14.1282(5)
CaCN ₂	R 3m	3.6900(3)	3.6900(3)	14.775(3)
SrCN ₂	Pnma	12.410(2)	3.963(2)	5.389(2)
BaCN ₂	R Ĵc	15.282(2)	15.282(2)	7.013(2)
BaCN ₂	I4/mcm	6.0249(4)	6.0249(4)	7.1924(5)
MnCN ₂	R 3m	3.3583(4)	3.3583(4)	14.347(2)
FeCN ₂	P6₃/mmc	3.2689(2)	3.2689(2)	9.401 (1)
CoCN ₂	P6₃/mmc	3.2129(4)	3.2129(4)	9.3902(2)
NiCN ₂	P6₃/mmc	3.1533(8)	3.1533(8)	9.272(3)
CuCN ₂	Стст	2.9921(1)	6.1782(1)	9.4003(2)
PbCN ₂	Pnma	5.5566	3.8677	11.7350
EuCN ₂	Pnma	12.3241(9)	3.9526(3)	5.3943(4)
Hf(CN ₂) ₂	Pbcn	9.4017(1)	7.9128(1)	5.8914(1)
Eu ₂ (CN ₂) ₃	Pnma	14.50285	3.86976	5.26743
Cr ₂ (NCN) ₃	R Jc	5.4751(1)	5.4751(1)	27.9696(3)
Lu ₂ (CN ₂) ₃	R Ĵc	6.267(1)	6.267(1)	29.367(6)
Yb ₂ (CN ₂) ₃	R Ĵc	6.295(1)	6.295(1)	29.448(5)
Tm ₂ (CN ₂) ₃	R Ĵc	6.3434(2)	6.3434(2)	29.5486(8)

Table S5. A brief summary crystallographic data of reported metal carbodiimides.

RE ₂ (CN ₂) ₃	R32	6.2732(8)-6.3393(7)	6.2732(8)-6.3393(7)	14.708(2)-14.723(3)
(RE=Tm-Lu)				
RE ₂ (CN ₂) ₃	C2/m	14.184(2)-14.853(2)	3.7471(3)-3.9907(6)	5.2051(5)-5.3243(9)
(RE=Y, Pr-Er)				
SrZn(NCN) ₂	Стст	3.60940(2)	19.9329(1)	6.36842(3)
LiAI(CN ₂) ₂	Pbcn	9.174(3)	6.417(2)	5.391(2)
Li ₂ Sn(CN ₂) ₃	Pnna	5.7315(1)	9.5484(2)	9.9743(1)
Na ₂ Sn(CN ₂) ₃	Pnna	5.9323(1)	9.7745(1)	10.7278(1)
Li ₂ Zr(CN ₂) ₃	R Ĵc	5.7832(1)	5.7832(1)	28.9107(3)
Li ₂ Hf(CN ₂) ₃	R Jc	5.7759(1)	5.7759(1)	28.8025(2)
LiY(CN ₂) ₂	Pbcn	9.815(2)	6.992(2)	6.139(2)
LiLa(CN ₂) ₂	P21/m	5.424(2)	3.7916(7)	10.13(3)
LaCN ₂ F	Стст	3.8864(4)	8.7237(9)	7.8248(8)
LiRE2(CN2)2F3	C2/c	11.401(3)-11.662(1)	6.389(2)-6.6416(7)	8.322(3)-8.5551(9)
(RE=Ce-Gd)				
$LaSr_3(CN_2)_2F_5$	I 42m	8.086(2)	8.086(2)	6.580(2)
Eu4 (CN ₂) ₂ F ₅	P 421c	16.053(1)	16.053(1)	6.5150(6)
$Ba_4Mg(CN_2)_4F_2$	P21/c	8.351(2)	8.617(1)	8.442(2)
La(CN ₂)Cl	P21/m	5.330(1)	4.0305(8)	7.545(1)
Eu ₂ (CN ₂)Cl ₂	C2/m	9.6200(17)	4.2299(7)	7.2224(13)
Sr ₂ (CN ₂)Cl ₂	C2/m	9.6225(9)	4.2508(4)	7.2498(6)

LiSr ₂ (CN ₂)Br	Fd $\bar{3m}$	14.641	14.641	14.641
LiEu2(CN2)Br3	Fd 3m	14.572	14.572	14.572
LiSr ₂ (CN ₂)I ₃	Fd 3m	15.231	15.231	15.231
$LiEu_4(CN_2)_3I_3$	P6₃/mmc	15.143(17)	15.143(17)	6.8232(10)
$Li_2RE_2Sr(CN_2)_5$	C2/m	13.692(5)-13.712(4)	3.6484(4)- 3.710(1)	11.417(2)-11.449(3)
(Sm-Tb)				
LiBa ₂ [Al(CN ₂) ₄]	P212121	6.843(1)	11.828(2)	11.857(2)
LiSr ₂ [Al(CN ₂) ₄]	C2/c	7.2311(1)	19.833(3)	7.2415(1)
LiEu2[AI(CN2)4]	C2/c	7.224(2)	19.804(4)	7.226(2)
LiSr2[Ga(CN2)4].	C2/c	4.272(2)	19.857(4)	7.263(2)
KRE[Si(CN ₂)4]	P21212	9.277(6)-9.486(2)	7.522(3)-7.613(2)	6.649(4)-6.854(2)
(RE=La-Gd)				
RbRE[Si(CN ₂) ₄]	1 4	8.359(2)-8.645(2)	8.359(2)-8.645(2)	6.529(2)-6.851(2)
(RE=La-Lu, Y)				
CsRE[Si(CN ₂) ₄]	1 4	8.359(2)-8.645(2)	8.359(2)-8.645(2)	6.529(2)-6.851(2)
(RE=La-Lu, Y)				
KRE[Ge(CN ₂) ₄]	P21212	9.3103(5)-	7.5143(5)-7.6824(7)	6.7476(7)-6.9977(5)
(RE=La-Gd)		9.4785(8)		
Cs <i>RE</i> [Ge(CN ₂)4]	14	8.5051(1)-8.6694(5)	8.5051(1)-8.6694(5)	6.7583(6)-6.9817(4)
(RE=La-Gd)				
RbRE[Ge(CN ₂) ₄]	14	8.4075(2)-8.5493(2)	8.4075(2)-8.5493(2)	6.7599(9)-6.9557(2)

(RE=La-Gd)

Reference

- 1 G. M. Sheldrick, *Acta Crystallogr A*, 2008, **64**, 112-122.
- 2 A. L. Spek, *J. Appl. Crystallogr.*, 2003, **36**, 7-13.
- 3 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, *Z Kristallogr*, 2005, 220, 567-570.
- 4 F. Liang, L. Kang, X. Zhang, M.-H. Lee, Z. Lin and Y. Wu, *Cryst. Growth Des.*, 2017, **17**, 4015-4020.
- 5 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 6 J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., 2003, 118, 8207-8215.
- 7 D. Vanderbilt, *Phys. Rev. B: Condens. Matter*, 1990, **41**, 7892-7895.
- 8 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.