Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Ion imprinted dual reference ratiometric fluorescence probe for

respective and simultaneous detection of Fe³⁺ and Cu²⁺

Rongjian Ying^a, Hongzhi Lu^{a*}, Shoufang Xu^{b*}

a School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005,

China

b School of Materials Science and Engineering, Linyi University, Linyi 276005,

China

* Corresponding author, E-mail: <u>luhongzhi@lyu.edu.cn</u>; <u>shfxu1981@163.com</u>

Figure S1 The fluorescence spectrum of CDs, QDs and the mixture of CDs and QDs (A); The fluorescence spectrum of CDs (B) and QDs (C) to various metal ions. The concentration of ions was 10μ M, respectively.

Figure S2 The stability of the as prepared imprinted probe against UV light (A), various anions (B), and pH (C); and (D) was the fluorescent quenching effect IIPs during 20 min; the concentration of Cu²⁺and Fe³⁺ions was both 50 μ M. For Cu²⁺, fluorescent intensity was recorded at 620 nm, For Fe³⁺, fluorescent intensity was recorded at 420 nm.

Figure S3 Different amount of imprinted polymers (A: 100 mg/L; B: 150 mg/L; C: 50 mg/L) exposure to different concentrations of Cu^{2+} and Fe^{3+} . The experimental conditions were pH=7.0 under room temperature; excited wavelength at 345 nm and the slit widths of emission and excitation were 5 nm (n = 5); reaction time was 20 min.

Figure S4 The fluorescence spectra of IIFPs exposure to different concentrations of Cu^{2+} and Fe^{3+} in river water samples (A). B and C were the linear fitting curve of Cu^{2+} and Fe^{3+} detection in river water sample. The experimental conditions: excited wavelength at 345 nm and the slit widths of emission and excitation were 5 nm (n = 3); reaction time was 20 min, the concentration of IIFPs was 100 mg/L.

Figure S5 The fluorescence spectrum of IIPs exposure to different concentrations of Cu^{2+} and Fe^{3+} in tap water samples (A). B and C were the linear fitting curve of Cu^{2+} and Fe^{3+} detection in tap water sample. The experimental conditions: excited wavelength at 345 nm and the slit widths of emission and excitation were 5 nm (n = 3); reaction time was 20 min, the concentration of IIPs was 100 mg/L.

Concentration of – probe (mg/L)	Cu ²⁺ detection		Fe ³⁺ detection	
	Linear range	LOD	Linear range	LOD
	(μΜ)	(nM)	(μM)	(nM)
50	0.5-30	156	1-50	322
100	0.5-50	130	1-100	340
150	2-100	526	4-150	1470

Table S1 The linear range and LOD for Cu^{2+} and Fe^{3+} measured by different concentration of imprinted probes.

Table S2 Detected concentration of Cu^{2+} and Fe^{3+} in river and tap water by this method and AAS.

sample	Cu ²⁺ (µ	M)	Fe ³⁺ (µM)		
	This method	AAS	This method	AAS	
River water	5.34	5.41	2.78	2.68	
Tap water	4.35	4.42	3.12	3.04	

Туре	Sample	ions	Added (µM)	Found (µM)	Recovery (%)	RSD (%)
Single spiking	River water	Cu ²⁺ (5.34)	0.50	6.07	104.0	3.6
			5.00	10.17	98.4	3.4
			20.00	25.16	99.3	2.4
		Fe ³⁺ (2.78)	1.00	3.63	96.0	3.9
			5.00	7.44	95.6	2.9
			20.00	22.89	100.5	2.4
	Tap water	Cu ²⁺ (4.35)	0.50	4.95	102.0	4.2
			5.00	9.09	97.2	3.4
			20.00	23.45	96.3	2.9
		Fe ³⁺ (3.12)	1.00	4.06	98.6	3.9
			5.00	7.75	95.4	3.1
			20.00	22.82	98.7	2.6
Mixed	River water	Cu ²⁺ (5.34)	20.00	25.16	99.3	2.5
		Fe^{3+} (2.78)	5.00	7.50	96.4	3.7
spiking	Tap water	Cu ²⁺ (4.35)	20.00	19.76	98.8	2.9
		Fe ³⁺ (3.12)	5.00	8.93	110.8	3.7

 Table S3 Recoveries of Cu²⁺ and Fe³⁺ in spiked river and tap water

Detected method	Linear rang (uM)	LOD (nM)	Real sample	Ref.
Cu-IIP -FAAS	0.0157-1.57	1.6	Tap and well water	1
Cu-IIP-ICP-AES	0-15.7	5.9	drinking water	2
Dual emission CDs based ratiometric fluorescence probe	0-0.5	7.31	Tap water lake water	3
Dual emission QDs based ratiometric fluorescence probe	0.05-0.5	1.1	Lake water	4
Cu-IIFP	0–70.0.	110-140	Tap water, river water	5
Cu-IIFP chip	1.7*10 ⁻³ -0.913	0.551	Lake water; sea water	6
Cu-IIFP	0.5-50	130	River water, tap water	This work

Table S4 Performance comparison with other reported fluorescence methods or IIP based detection method for Cu²⁺ or Fe³⁺ ions sensing

Fe-IIFP	1.0-100	340	River water, tap water	This work
CDs for Fe ³⁺ detection	1150	330	River water	7
nitrogen-doped CDs for Fe ³⁺ detection	2–25 μM	170	Drinking water	8

Reference

- [1] M. Shamsipur, A.Besharati-Seidani, J. Fasihi and H. Sharghi, Talanta, 2010, 83, 674-681.
- [2]. Hossein Hashemi, Mostafa Khajeh, Massoud Kaykhaii, Anal. Methods, 2013, 5, 2778-2783.
- [3] Y. Wang, M.Wu, S. Yu and C. Jiang, RSC Adv., 2018, 8, 12708–12713.
- [4] J. Yao, K.Zhang, H. Zhu, F. Ma, M. Sun, H. Yu, J. Sun and S. Wang, Anal. Chem. 2013, 85, 6461–6468.
- [5] Z. Xu, P. Deng, J. Li, S. Tang, Sensors and Actuators B 255 (2018) 2095–2104.
- [6] J. Qi, B.Li, X. Wang, Z. Zhang, Z. Wang, J. Han, L. Chen, Sensors and Actuators B 251 (2017) 224–233
- [7] J. Shangguan, J. Huang, D. He, X. He, K. Wang, R. Ye, X. Yang, T. Qing and J. Tang, Anal. Chem. 2017, 89, 7477–7484.
- [8] X. Miao, X. Yan, D. Qu, D. Li, F. Feng Tao and Z. Sun, ACS Appl. Mater. Interfaces 2017, 9, 18549–18556.