Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information for:

Kinetics and mechanism of the reaction of cyanocobalamin with potassium hydroxide in

non-aqueous media

Denis S. Salnikov^{*}, Sergei V. Makarov

Department of Food Chemistry, State University of Chemistry and Technology, Sheremetevskiy str. 7, Ivanovo, 153000, Russia

densal@isuct.ru

Figure S1. UV-Vis spectral changes recorded during reaction between CNCbl and KOH in ⁱPrOH (*first step*): [CNCbl] = 6×10^{-5} M; [KOH] = 1 MM; 15 ^{0} C; anaerobic conditions.

Figure S2. UV-Vis spectral changes recorded during reaction between CNCbl and KOH in ⁱPrOH (*second step*): $[CNCbl] = 6 \times 10^{-5} \text{ M}$; [KOH] = 1 MM; 15 ^oC; anaerobic conditions.

Figure S3. UV-Vis spectral changes recorded during reaction between CNCbl and KOH in DMSO (*second step*): $[CNCbl] = 6 \times 10^{-5} \text{ M}$; [KOH] = 1 MM; 15 °C; anaerobic conditions.

Figure S4. UV-vis spectra of different cobalamins in ⁱPrOH: 1 - cyanocobalamin, 2 – dicyanocobalamin, 3 – reduced cobalamin Co^{2+} , 4 – super reduced cobalamin Co^{1+} : [Cbl] = 6.0 × 10⁻⁵ M, 25 ^oC.

Figure S5. UV-vis spectra of mixtures: 1 - dicyanocobalamin and super reduced cobalamin Co¹⁺ 1:1 ratio, 2 - dicyanocobalamin and reduced cobalamin Co²⁺ 1:1 ratio: [Cbl] = 6.0×10^{-5} M

Figure S6. Dependence of the absorbance of the intermediate formed during the reaction of cyanocobalamin with potassium hydroxide at 484 nm versus [KOH] in ⁱPrOH: [CNCbl] = 6.0×10^{-5} M, 25 ^oC, anaerobic conditions.

Figure S7. UV-vis spectral changes registered during storage solution of the product of reaction between cyanocobalamin and potassium hydroxide in iPrOH: $[CNCbl] = 6 \times 10^{-5} \text{ M}$; [KOH] = 1 MM; 15 °C; anaerobic conditions.

Figure S8. IR-spectrum of red product 1 (dehydrovitamin B₁₂, containing lactone ring at C8) in KBr.

Figure S9. IR-spectrum of red product 2 (dehydrovitamin B₁₂, containing unsaturated amide side chain) in KBr.

Figure S10. MALDI TOF mass spectra: top – cyanocobalamin, middle - red product 1, bottom – red product 2

Figure S11. Plot $1/k_{obs1}$ vs 1/[KOH] for the reaction of cyanocobalamin with potassium hydroxide in ⁱPrOH (first step): [CNCbl] = 6 × 10⁻⁵ M; 15 °C.

Figure S12. The dependence of k_{obs1} vs water concentration in ⁱPrOH: [CNCbl] = 6×10^{-5} M; [KOH] = 1.4 MM; anaerobic conditions.

Figure S13. The dependence of k_{obs1} vs methanol concentration in ⁱPrOH: [CNCbl] = 6×10^{-5} M; [KOH] = 1.4 MM; anaerobic conditions.

Figure S14. Typical kinetic trace recorded for decomposition of intermediate generated by mixing cyanocobalamin with potassium hydroxide at [CNCbl]:[KOH] = 1:1 ratio in DMSO: $[CNCbl] = [KOH] = 6.0 \times 10^{-5} \text{ M}, 20 \,^{0}\text{C}$, anaerobic conditions

Table S1. Kinetic and thermodynamic parameters for decomposition of intermediate generated by mixing cyanocobalamin and potassium hydroxide in iPrOH or DMSO

T, °C	k ₁₁ 10 ³ , s ⁻¹
35	12.9 ± 0.2
30	8.3 ± 0.3
25	3.8 ± 0.2
20	2.7 ± 0.05
15	1.2 ± 0.1
10	0.67 ± 0.02
ΔН [≠] (k), [кДж моль ⁻¹]	$+ 84 \pm 12$
ΔS [≠] (k), [кДж моль ⁻¹]	- 7 ± 2

Figure S15. Typical kinetic trace recorded for decomposition of super reduced Co^{1+} generated by mixing cyanocobalamin and potassium hydroxide in iPrOH: [CNCbl] = 6 x 10⁻⁵ M; [KOH] = 1 MM; 15 °C; anaerobic conditions.

T, °C	k ₅ , s ⁻¹
35	0.008
30	0.004
25	0.0026
20	0.0012
15	0.00078
ΔH [≠] (k), [кДж моль ⁻¹]	$+78 \pm 4$
ΔS [≠] (k), [Дж К ⁻¹ моль ⁻¹]	- 34 ± 3

Table S2. Kinetic and thermodynamic parameters for decomposition of super reduced Co¹⁺ generated by mixing cyanocobalamin and potassium hydroxide in iPrOH

Figure S16. Plot $(k_{obs2} - k_{11})/[KOH]$ vs k_{obs2} for the reaction of cyanocobalamin with potassium hydroxide in ⁱPrOH (*second step*): [CNCbl] = 6 × 10⁻⁵ M; 15 °C; anaerobic conditions