Supporting information for the paper:

Effect of Carbon-skeleton Isomerism on Dielectric Property and

Proton Conduction of Organic Cocrystal Compounds Assembled

from 1,2,4,5-Benzenetetracarboxylic Acid and Piperazine Derivatives

Xiaoqiang Liang, * a Yixiang Chen, b Li Wang, a Feng Zhang,* c Zenglu Fan,* b

Tingting Cao,^a Yaya Cao,^a Huifang Zhu,^a Xinyue He,^a Bolin Deng,^a Yazhi You,^a Yu

Dong ^a and Yamei Zhao ^a

^a College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, PR China

^b College of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, PR China

^c Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China

Table of Contents

Crystal data and Structures
Infrared Absorption SpectraS6
Powder X-ray Diffraction PatternsS7
Thermogravimetric Analysis Curves
Dielectric Properties
Melting Point Measurements
Powder X-ray Diffraction Patterns after Dielectric MeasurementsS16
Raman SpectroscopyS17-S18
Proton-conducting Properties
Powder X-ray Diffraction Patterns after Proton-conducting Measurements

D-H···A	d(D-H)	d(H…A)	d(D…A)	∠(DHA)		
OCC 1						
O(2)-H(2)-O(6a)	0.85	1.80	2.6368(15)	167		
O(4)-H(4A)····O(3b)	0.85	2.58	3.3660(17)	154		
O(7) - H(7) - O(3c)	0.85	1.78	2.6279(15)	172		
O(7)-H(7)···O(4c)	0.85	2.63	3.1517(15)	121		
O(1W)-H(1WA)-O(5)	0.903(17)	2.19(2)	3.014(2)	151		
$N(12)-H(2A)\cdots O(1Wd)$	0.89	1.89	2.778(13)	172		
N(12)-H(2B)····O(8e)	0.89	1.96	2.754(13)	148		
$N(14)-H(14C)\cdotsO(1Wc)$	0.97	2.29	3.064(4)	136		
N(14)-H(14D)····O(8f)	0.97	2.09	2.753(5)	124		
OCC 2						
O(1W)-H(1WD)O(14a)	0.85	2.49	3.0618(18)	126		
N(1)-H(1A)····O(11)	0.90	1.86	2.616(2)	141		
N(1)-H(1B)O(1W)	0.90	1.90	2.790(2)	172		
O(1)-H(1C)O(5a)	0.85	2.27	2.5834(17)	102		
O(1W)-H(1WC)-O(1b)	0.85	2.56	3.1865(17)	131		
O(1W)-H(1WC)-O(6a)	0.85	2.33	2.9118(18)	126		
N(2)-H(2A)-O(8a)	0.89	2.01	2.738(2)	138		
O(3)-H(3A)····O(7b)	0.85	2.55	3.2469(18)	140		
$O(7)-H(7A)\cdots O(4c)$	0.85	1.81	2.6145(19)	158		
O(12)-H(12C)···O(15b)	0.85	1.92	2.5268(19)	127		
O(13)-H(13A)····O(10d)	0.85	1.94	2.7239(18)	153		
O(16) - H(16A) - O(12c)	0.85	2.46	3.1702(19)	142		

Table S1. Hydrogen-bonding geometry parameters (Å, °) for OCC 1 and OCC 2

Symmetry codes : a)+x,+y,1+z; b)1-x, -y, -z; c) -1+x,1+y,+z; d)1-x,1-y, -1-z; e) -x, 2-y, -z; f) +x,+y,-1+z for OCC 1; a) -1+x, y, z; b) x,-1+y, z; c) x, 1+y, z; d)1+x, y, zfor OCC 2.

Fig. S1 A 2D supramolecular network with (4, 4) topology in OCC 1.

Fig. S2 The π - π stacking interactions of benzene rings in two adjacent layers in OCC 1.

Fig. S3 The cavity with dimensions of 5.497×8.062 Å² in OCC 1.

Fig. S4 A 2D supramolecular network with (4, 4) topology in OCC 2.

Fig. S5 The π - π stacking interactions of benzene rings in two adjacent layers in OCC 2.

Fig. S6 The cavity with dimensions of 5.486×8.040 Å² in OCC 2.

Fig. S7 IR absorption spectra of H_4 betc, Hopip and OCC 1 in the solid state at room temperature.

Fig. S8 IR absorption spectra of H_4 betc, Mepip and OCC 2 in the solid state at room temperature.

Fig. S9 The PXRD patterns for OCC 1 of a simulation based on single-crystal analysis and as-synthesized bulk crystals.

Fig. S10 The PXRD patterns for OCC 2 of a simulation based on single-crystal analysis and as-synthesized bulk crystals.

Fig. S11 Thermogravimetric curve for OCC 1.

Fig. S12 Thermogravimetric curve for OCC 2.

Fig. S13 The dielectric constant (ϵ') for OCC 1 measured as a function of temperature at various frequencies in the heating process.

Fig. S14 The dielectric constant (ϵ') for OCC 2 measured as a function of temperature at various frequencies in the heating process.

Fig. S15 The dielectric constant (ϵ') for OCC 1 measured as a function of temperature at various frequencies in the cooling process.

Fig. S16 The dielectric constant (ϵ') for OCC 2 measured as a function of temperature at various frequencies in the cooling process.

Fig. S17 The dielectric loss (tan δ) for OCC 1 measured as a function of temperature at various frequencies in the heating process.

Fig. S18 The dielectric loss (tan δ) for OCC 2 measured as a function of temperature at various frequencies in the heating process.

Fig. S19 The dielectric loss (tan δ) for OCC 1 measured as a function of temperature at various frequencies in the cooling process.

Fig. S20 The dielectric loss (tan δ) for OCC 2 measured as a function of temperature at various frequencies in the cooling process.

Fig. S21 The dielectric loss (tan δ) for OCC 1 measured as a function of frequency at various temperatures in the heating process.

Fig. S22 The dielectric loss (tan δ) for OCC 2 measured as a function of frequency at various temperatures in the heating process.

(c)

(d)

(f)

Fig. S23 Plots of the state of OCC 1 at (a) 36 °C(309 K), (b) 92 °C(365 K), (c) 100 °C (373 K), (d) 150 °C(423 K), (e) 180 °C(453 K), (f) 197 °C(470 K) in the process of melting point measurement.

(b)

(d)

(e)

Fig. S24 Plots of the state of OCC **2** at (a) 36 °C(309 K), (b) 111 °C(384 K), (c) 122 °C (395 K), (d) 150 °C(423 K), (e) 180 °C(453 K), (f) 197 °C(470 K) in the process of melting point measurement.

Fig. S25 The PXRD patterns for OCC 1 of samples after the dielectric measurement, as-synthesized and simulated from single-crystal.

Fig. S26 The PXRD patterns for OCC 2 of samples after the dielectric measurement, as-synthesized and simulated from single-crystal.

Raman frequency (cm ⁻¹)	Suggested assignment			
	OCC 1			
676(m)	$\gamma(-NH^{2+})^a$			
741(m), 773(m),782 (vw)	$\gamma(-NH^{2+})^{b}$			
800(m), 808(s)	$v_{asym}(O-HO)$			
1163(m)	β (C–H)			
1259(m), 1390(s)	$v_{asym}(-COO^{-})$			
1567(w), 1608(s), 1565(w)	$v_{sym}(-COO^{-})$			
1703(w)	$v(C=O) + \delta(OH)$			
OCC 2				
675(m)	$\gamma(-NH^{2+})^a$			
782(w), 792(w)	$\gamma(-NH^{2+})^{b}$			
800(m), 808(s)	$v_{asvm}(O-HO)$			
1167(s)	β(C-H)			
1261(vw), 1391(s)	$v_{asym}(-COO^{-})$			
1570(m), 1607(s)	$v_{\rm sym}(-COO^-)$			
1722(vw)	$v(C=O) + \delta(OH)$			

Table S2. Raman frequencies (cm⁻¹) of OCC 1 and OCC 2 and suggested assignment

^awagging mode; ^b twist mode; γ -deformation out of plane; ν_{asym} – asymmetric stretching; ν_{sym} - symmetric stretching; β –in-plane-bending; δ – deformation in plane; vw-very weak, w-weak, m-medium, s-strong.

Fig. S27 Temperature evolution of Raman bands of OCC 1 in the region of 600-1800 cm⁻¹.

Fig. S28 Temperature evolution of Raman bands of OCC 2 in the region of 600-1800 cm⁻¹.

Fig. S29 Nyquist plots of OCC 1 at different temperatures and ~97% RH (relative humidity).

Fig. S30 Nyquist plots of OCC 2 at different temperatures and ~97% RH (relative humidity).

Fig. S31 Temperature dependence of the conductivity (σ) for OCC 1 at ~97% RH.

Fig. S32 Temperature dependence of the conductivity (σ) for OCC 2 at ~97% RH.

Fig. S33 Nyquist plots of OCC 1 at different RH (relative humidity) and 298 K.

Fig. S34 Nyquist plots of OCC 2 at different RH (relative humidity) and 298 K.

Fig. S35 Nyquist plot of OCC 1 at ambient conditions and at 299 K.

Fig. S36 Nyquist plot of OCC 2 at ambient conditions and at 299 K.

Fig. S37 The PXRD patterns for OCC 1 of samples after the impendence measurement, as-synthesized and simulated from single-crystal.

Fig. S38 The PXRD patterns for OCC 2 of samples after the impendence measurement, as-synthesized and simulated from single-crystal.