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Table S1. Hydrogen-bonding geometry parameters (Å, °) for OCC 1 and OCC 2

D−HA  d(D−H) d(HA) d(DA)
∠(DHA)

OCC 1
O(2)−H(2)O(6a) 0.85 1.80 2.6368(15) 167
O(4)−H(4A)O(3b) 0.85 2.58 3.3660(17) 154
O(7)−H(7)O(3c) 0.85 1.78 2.6279(15) 172
O(7)−H(7)O(4c) 0.85 2.63 3.1517(15) 121
O(1W)−H(1WA)O(5) 0.903(17) 2.19(2) 3.014(2) 151
N(12)−H(2A)O(1Wd) 0.89 1.89 2.778(13) 172
N(12)−H(2B)O(8e) 0.89 1.96 2.754(13) 148
N(14)−H(14C)O(1Wc) 0.97 2.29 3.064(4) 136
N(14)−H(14D)O(8f) 0.97 2.09 2.753(5) 124

OCC 2
O(1W)−H(1WD)O(14a) 0.85 2.49 3.0618(18) 126
N(1)−H(1A)O(11) 0.90 1.86 2.616(2) 141
N(1)−H(1B)O(1W) 0.90 1.90 2.790(2) 172
O(1)−H(1C)O(5a)                               0.85 2.27 2.5834(17) 102
O(1W)−H(1WC)O(1b) 0.85 2.56 3.1865(17) 131
O(1W)−H(1WC)O(6a) 0.85 2.33 2.9118(18) 126
N(2)−H(2A)O(8a) 0.89 2.01 2.738(2) 138
O(3)−H(3A)O(7b) 0.85 2.55 3.2469(18) 140
O(7)−H(7A)O(4c)                               0.85 1.81 2.6145(19) 158
O(12)−H(12C)O(15b) 0.85 1.92 2.5268(19) 127
O(13)−H(13A)O(10d) 0.85 1.94 2.7239(18) 153
O(16)−H(16A)O(12c) 0.85 2.46 3.1702(19) 142
Symmetry codes : a)+x,+y,1+z; b)1−x, −y, −z; c) −1+x,1+y,+z; d)1−x,1−y, −1−z; e) −x, 
2−y, −z; f) +x,+y,−1+z for OCC 1; a) −1+x, y, z; b) x,−1+y, z; c) x, 1+y, z; d)1+x, y, z 
for OCC 2.
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Fig. S1 A 2D supramolecular network with (4, 4) topology in OCC 1.

Fig. S2 The π−π stacking interactions of benzene rings in two adjacent layers in OCC 
1.
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Fig. S3 The cavity with dimensions of 5.497×8.062 Å2 in OCC 1.

Fig. S4 A 2D supramolecular network with (4, 4) topology in OCC 2.
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Fig. S5 The π−π stacking interactions of benzene rings in two adjacent layers in OCC 
2.

Fig. S6 The cavity with dimensions of 5.486×8.040Å2 in OCC 2.
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Fig. S7 IR absorption spectra of H4betc, Hopip and OCC 1 in the solid state at room 
temperature.

Fig. S8 IR absorption spectra of H4betc, Mepip and OCC 2 in the solid state at room 
temperature.
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Fig. S9 The PXRD patterns for OCC 1 of a simulation based on single-crystal 
analysis and as-synthesized bulk crystals.

Fig. S10 The PXRD patterns for OCC 2 of a simulation based on single-crystal 
analysis and as-synthesized bulk crystals.
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Fig. S11 Thermogravimetric curve for OCC 1.

Fig. S12 Thermogravimetric curve for OCC 2.
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Fig. S13 The dielectric constant (εʹ) for OCC 1 measured as a function of temperature 
at various frequencies in the heating process.

Fig. S14 The dielectric constant (εʹ) for OCC 2 measured as a function of temperature 
at various frequencies in the heating process.
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Fig. S15 The dielectric constant (εʹ) for OCC 1 measured as a function of temperature 
at various frequencies in the cooling process.

Fig. S16 The dielectric constant (εʹ) for OCC 2 measured as a function of temperature 
at various frequencies in the cooling process.
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Fig. S17 The dielectric loss (tan δ) for OCC 1 measured as a function of temperature 
at various frequencies in the heating process.

Fig. S18 The dielectric loss (tan δ) for OCC 2 measured as a function of temperature 
at various frequencies in the heating process.



S12

Fig. S19 The dielectric loss (tan δ) for OCC 1 measured as a function of temperature 
at various frequencies in the cooling process.

Fig. S20 The dielectric loss (tan δ) for OCC 2 measured as a function of temperature 
at various frequencies in the cooling process.
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Fig. S21 The dielectric loss (tan δ) for OCC 1 measured as a function of frequency at 
various temperatures in the heating process.

Fig. S22 The dielectric loss (tan δ) for OCC 2 measured as a function of frequency at 
various temperatures in the heating process.
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(a)                                (b)

(c)                                  (d)

(e)                                  (f)

Fig. S23 Plots of the state of OCC 1 at (a) 36 ℃(309 K), (b) 92 ℃(365 K), (c) 100 ℃ 

(373 K), (d) 150 ℃(423 K), (e) 180 ℃(453 K), (f) 197 ℃(470 K) in the process of 

melting point measurement.
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(a)                                (b)

(c)                                (d)

(e)                                (f)

Fig. S24 Plots of the state of OCC 2 at (a) 36 ℃(309 K), (b) 111 ℃(384 K), (c) 122 

℃ (395 K), (d) 150 ℃(423 K), (e) 180 ℃(453 K), (f) 197 ℃(470 K) in the process of 

melting point measurement.
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Fig. S25 The PXRD patterns for OCC 1 of samples after the dielectric measurement, 
as-synthesized and simulated from single-crystal.

Fig. S26 The PXRD patterns for OCC 2 of samples after the dielectric measurement, 
as-synthesized and simulated from single-crystal.
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Table S2. Raman frequencies (cm-1) of OCC 1 and OCC 2 and suggested assignment

Raman frequency (cm-1) Suggested assignment
OCC 1

676(m) γ(−NH2+)a

741(m), 773(m),782 (vw) γ(−NH2+)b

800(m), 808(s) νasym(O−HO)
1163(m) β(C−H)
1259(m), 1390(s) νasym(−COO−)
1567(w), 1608(s), 1565(w) νsym(−COO−)
1703(w) ν(C=O) +δ(OH)

OCC 2
675(m) γ(−NH2+)a

782(w), 792(w) γ(−NH2+)b

800(m), 808(s) νasym(O−HO)
1167(s) β(C−H)
1261(vw), 1391(s) νasym(−COO−)
1570(m), 1607(s) νsym(−COO−)
1722(vw) ν(C=O) +δ(OH)

awagging mode; b twist mode; γ−deformation out of plane; νasym − asymmetric 
stretching; νsym− symmetric stretching; β −in-plane-bending; δ − deformation in plane; 
vw−very weak, w−weak, m−medium, s−strong.
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Fig. S27 Temperature evolution of Raman bands of OCC 1 in the region of 600−1800 
cm−1.

Fig. S28 Temperature evolution of Raman bands of OCC 2 in the region of 600−1800 
cm−1.
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Fig. S29 Nyquist plots of OCC 1 at different temperatures and ~97% RH (relative 
humidity).
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Fig. S30 Nyquist plots of OCC 2 at different temperatures and ~97% RH (relative 
humidity).
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Fig. S31 Temperature dependence of the conductivity (σ) for OCC 1 at ~97% RH.

Fig. S32 Temperature dependence of the conductivity (σ) for OCC 2 at ~97% RH.
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Fig. S33 Nyquist plots of OCC 1 at different RH (relative humidity) and 298 K.
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Fig. S34 Nyquist plots of OCC 2 at different RH (relative humidity) and 298 K.
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Fig. S35 Nyquist plot of OCC 1 at ambient conditions and at 299 K.

Fig. S36 Nyquist plot of OCC 2 at ambient conditions and at 299 K.
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Fig. S37 The PXRD patterns for OCC 1 of samples after the impendence 
measurement, as-synthesized and simulated from single-crystal.

Fig. S38 The PXRD patterns for OCC 2 of samples after the impendence 
measurement, as-synthesized and simulated from single-crystal. 


