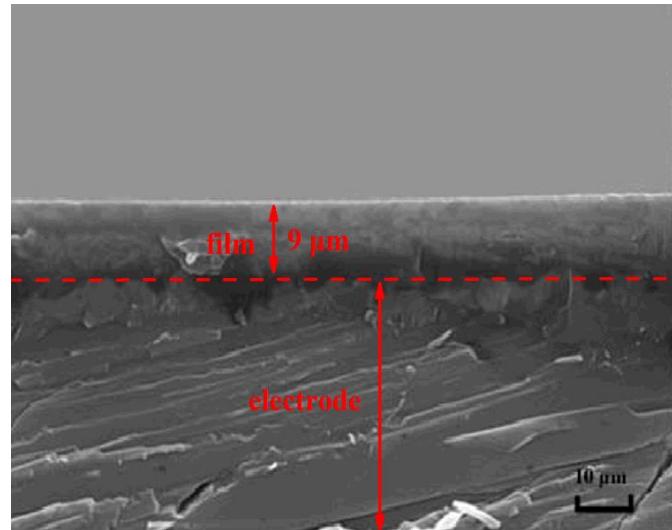


Supplemental Information submitted to *New journal of chemistry* for:

Prussian blue nanocubes with open framework structure coated with polyoxometalates as a highly sensitive platform for ascorbic acid detection in drinks / human urine


Di Zhu,^a Wei Zhu,^a Jianjiao Xin,^{a,b} Lichao Tan,^a Xinming Wang,^a Haijun Pang,^a and Huiyuan Ma^{*a}

^aSchool of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China

^bCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China

Corresponding author: Huiyuan Ma

E-mail address: mahy017@163.com

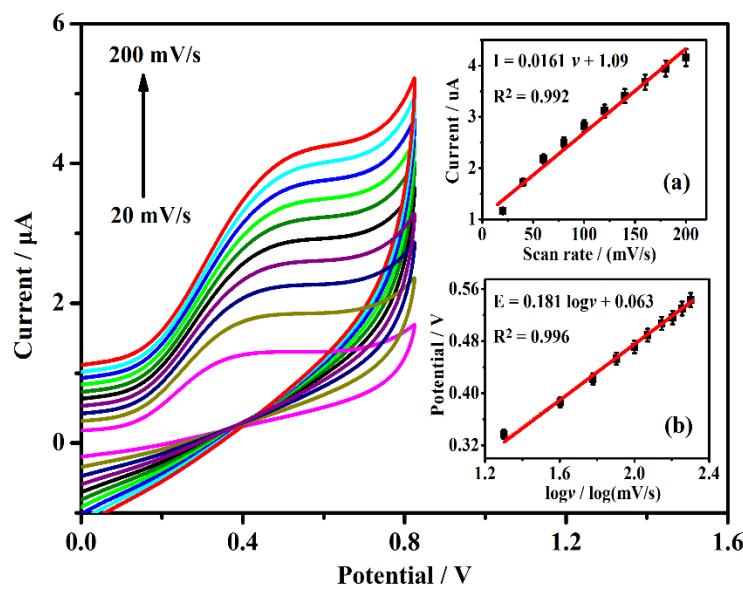
Fig. S1 The cross section of the PB NCs@POMs nanocomposite electrode.

Fig. S2 describes the effect of the different scan rate for 5 μM AA oxidation at the PB NCs@POMs nanocomposite in 0.1 M PBS (pH 7.0) at scan rates range from 20 to 200 mV/s. As Fig. S2(a) reveals, a linear dependence of peak currents vs. scan rate is shown by the consequences, indicating a surface adsorption control progress of the electron transfer response. The linear correlation equation of the I_{Pa} (μA) vs. v (mV s^{-1}) is:

$$I_{\text{Pa}} = 0.0161v + 1.09 \quad (R^2 = 0.992) \quad (1)$$

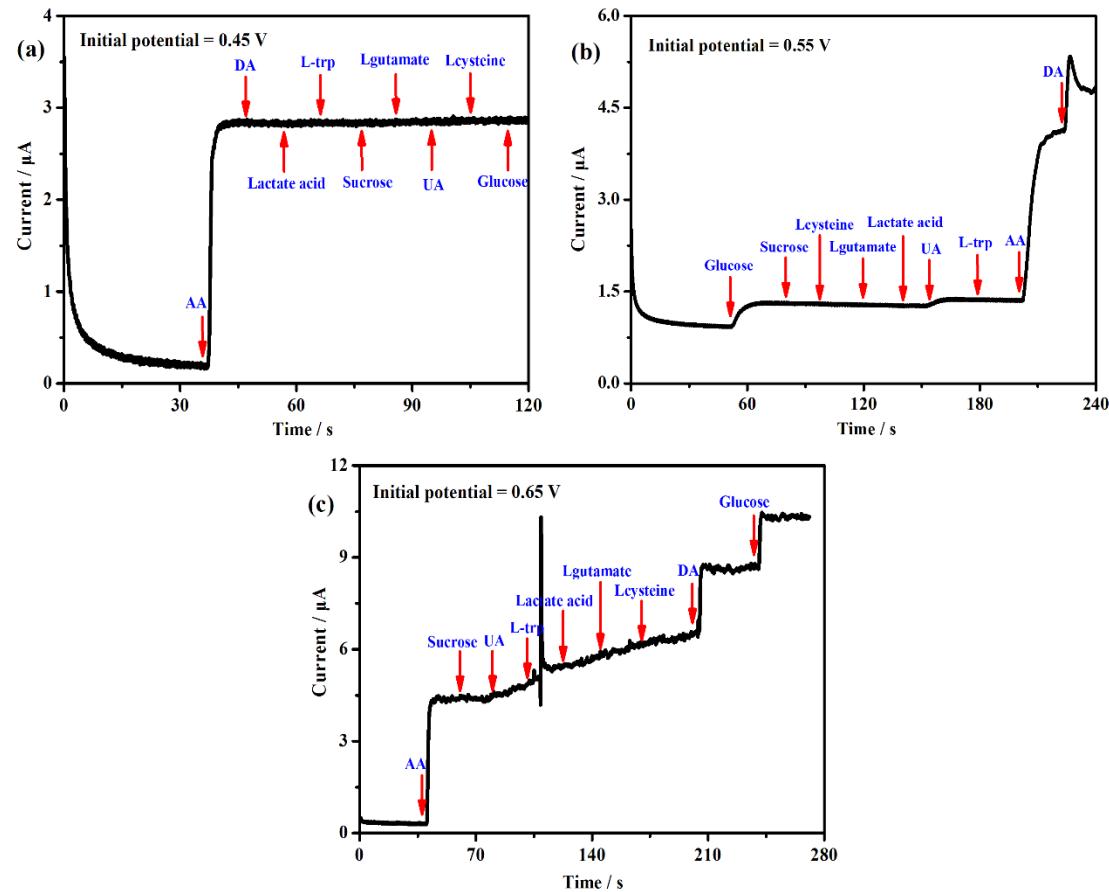
Besides, the linear relation of AA's oxidation peak potential (E_{Pa}) vs. the natural logarithm of scan rates ($\log v$) is revealed by Fig. S2(b). The linear relationship is expressed as:

$$E_{\text{Pa}} = 0.181 \log v + 0.0633 \quad (R^2 = 0.996) \quad (2)$$


According to the Laviron theory for an adsorption controlled and totally irreversible electrode process [1,2,3], E_{Pa} is defined by the following equation.

$$E_{\text{Pa}} = E_0 - \left(\frac{2.3RT}{\alpha nF} \right) \left[\log \frac{RTKs}{\alpha nF} - \log v \right] \quad (3)$$

where α is the transfer coefficient, K_s is the heterogeneous electrontransfer rate constant, n is the number of electrons transferred, v is the scan rate, and E_0 is the formal standard potential. Other symbols have their usual meanings. Thus, the value of αn can be easily calculated from the slope of E_{Pa} vs. $\log v$. In this system, the slope was found to be 0.181, taking $T = 298$ K, $R = 8.314$ J/K mol, and $F = 96,485$ C/mol, the αn was calculated to be 0.327. The α value can be determined from the following equation [4,5,6]:


$$E_{Pa} - E_{Pa/2} = \frac{1.857RT}{\alpha F} = \frac{47.7}{\alpha} \text{ mV} \quad (4)$$

where E_{Pa} and $E_{Pa/2}$ refers to the peak potential and the half-height, respectively. From this, the value of α is estimated to be 0.209. Based on this result, the electron transfer number of AA oxidation on PB NCs@POMs nanocomposite is calculated to be 1.56 approximately which is close to two electrons' transfer progress.

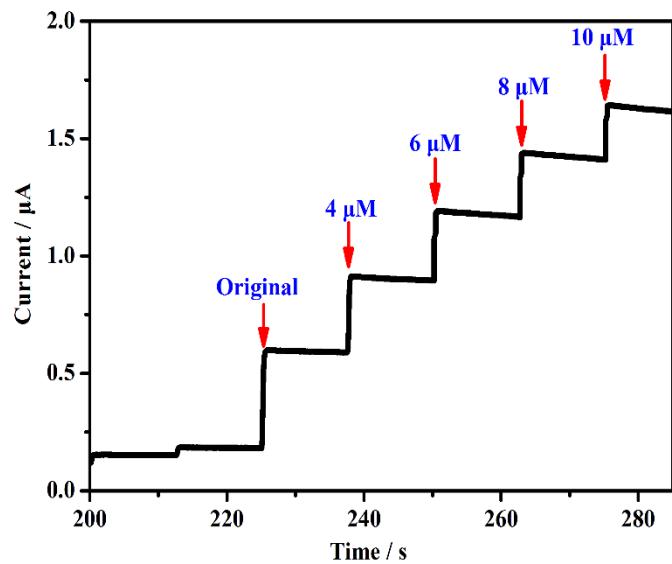


Fig. S2 CVs of 5 μM AA on the surface of PB NCs@POMs nanocomposite at various scan rates range from 20 to 200 mV s^{-1} in 0.1 M PBS (pH 7.0). (a) Dependence of the oxidation peak current on scan rate. (b) Calibration plot of E_P vs. $\log v$.

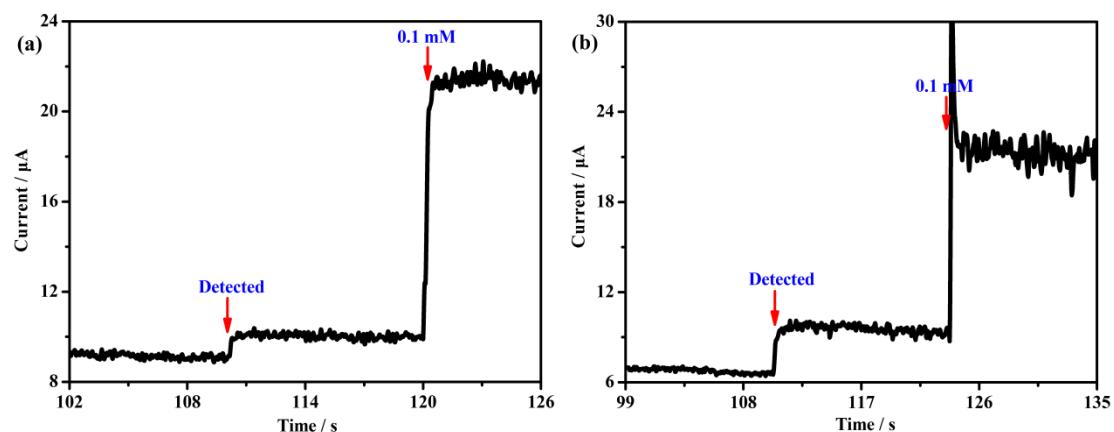

1. Y. Temerk and H. Ibrahim, *Sens. Actuators B: Chem.*, 2016, **224**, 868-877.
2. J. B. Raoof, R. Ojani, M. Baghayeri and F. Ahmadi, *Anal. Methods*, 2012, **4**, 1825-1832.
3. E. Laviron, *J. Electroanal. Chem.*, 1979, **101**, 19-28.
4. M. I. Sabela, T. Mpanza, S. Kanchi, D. Sharma and K. Bisetty, *Biosens. Bioelectron*, 2016, **83**, 45-53.
5. Y. Temerk and H. Ibrahim, *Sens. Actuators B: Chem.*, 2016, **224**, 868-877.
6. J. Li, H. Feng, J. Li, J. Jiang, Y. Feng, L. He and D. Qian, *Electrochim. Acta*, 2015, **2015**, 176, 827-835.

Fig. S3 The i-t curves of the PB NCs@POMs nanocomposite containing 25 μ M of ascorbic acid, dopamine, glucose, uric acid, lactate acid, sucrose, l-gutamate, l-cysteine and l-tryptophan in 0.1 M PBS (pH 7.0) at different initial potentials of (a) 0.45V, (b) 0.55V, (c) 0.65V.

Fig. S4 The i-t curve of the PB NCs@POMs nanocomposite for AA detection in drinks of orange juice.

Fig. S5 The i-t curve of the PB NCs@POMs nanocomposite for AA detection in human urine of (a) the first volunteer, and (b) the second volunteer.