Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

Supporting information for the manuscript " Ultra-Low Thermal Conductivity in Na/Sb Chalcobismuthates: Synthesis, Crystal Structures, Optical Property and ²³Na NMR Spectroscopy"

Fatimah Alahmari,* Somnath Dey, Abdul-Hamid Emwas, Bambar Davaasuren, and Alexander Rothenberger,

* Corresponding author: <u>fsalahmari@iau.edu.sa</u>

New Journal of Chemistry

Figure S1. SEM/EDX analysis for Na₂BiSbS₄, Na₂BiSbSe₄ and Na₂BiSbTe₄. The estimated atomic ratio is of Na:Bi:Sb:Q = 2:1:1:4. The EDX analyses were carried out on different spots of the same crystal. Several crystals were measured parallel to confirm the results.

38.25

Figure S2. PXRD analysis for Na₂BiSbS₄, Na₂BiSbSe₄ and Na₂BiSbTe₄.

Figure S3. PXRD analysis for Na₂BiSbS₄, Na₂BiSbSe₄ and Na₂BiSbTe₄ before and after exposure to air for a week.

Figure S4.Varible temperature PXRD analysis for Na₂BiSbS₄, Na₂BiSbSe₄ and Na₂BiSbTe₄ up to 700 °C.

Label	Х	у	Z	Occupancy	$U_{eq}^{\ *}$
Na(1)	0	5000	5000	0.5	27(1)
Bi(1)	0	5000	5000	0.25	27(1)
Sb(1)	0	5000	5000	0.25	27(1)
S(1)	5000	5000	5000	1	38(1)

Table S1. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for Na₂BiSbS₄ at 170 K with estimated standard deviations in parentheses.

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S2. Anisotropic displacement parameters ($Å^2x10^3$) for Na₂BiSbS₄ at 170 K with estimated standard deviations in parentheses.

Label	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Na(1)	27(1)	27(1)	27(1)	0	0	0
Bi(1)	27(1)	27(1)	27(1)	0	0	0
Sb(1)	27(1)	27(1)	27(1)	0	0	0
S(1)	38(1)	38(1)	38(1)	0	0	0

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Table S3. Atomic coordinates ($x10^4$) and equivalent isotropic displacement parameters ($Å^2x10^3$) for Na₂BiSbSe₄ at 200 K with estimated standard deviations in parentheses.

Label	Х	у	Z	Occupancy	U_{eq}^{*}
Na(1)	0	5000	5000	0.5	28(1)
Sb(1)	0	5000	5000	0.2501	28(1)
Bi(1)	0	5000	5000	0.2501	28(1)
Se(1)	5000	5000	5000	1	14(1)

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S4. Anisotropic displacement parameters ($Å^2x10^3$) for Na₂BiSbSe₄ at 200 K with estimated standard deviations in parentheses.

Label	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Na(1)	28(1)	28(1)	28(1)	0	0	0
Sb(1)	28(1)	28(1)	28(1)	0	0	0
Bi(1)	28(1)	28(1)	28(1)	0	0	0
Se(1)	14(1)	14(1)	14(1)	0	0	0

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

Label	Х	у	Z	Occupancy	${U_{eq}}^{*}$
Na(1)	0	5000	5000	0.5	21(1)
Sb(1)	0	5000	5000	0.2501	21(1)
Bi(1)	0	5000	5000	0.2501	21(1)
Te(1)	5000	5000	5000	1	17(1)

Table S5. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for Na₂BiSbTe₄ at 150 K with estimated standard deviations in parentheses.

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S6. Anisotropic displacement parameters ($Å^2x10^3$) for Na₂BiSbTe₄ at 150 K with estimated standard deviations in parentheses.

Label	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Na(1)	21(1)	21(1)	21(1)	0	0	0
Sb(1)	21(1)	21(1)	21(1)	0	0	0
Bi(1)	21(1)	21(1)	21(1)	0	0	0
Te(1)	17(1)	17(1)	17(1)	0	0	0

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$