Supporting Information(SI)

Synthesis of high-performance insensitive energetic materials

based on the nitropyrazole and 1,2,4-triazole

Minxian Xu,^a Guangbin Cheng,^a Hualin Xiong,^a Bohan Wang^a Xuhai Ju,^a and Hongwei Yang,^{*a}

^aSchool of Chemical Engineering,Nanjing University of Science and Technology,Nanjing, 210094, China. Email: hyang@mail.njust.edu.cn

Table of contents

1. Computation data	2
2. References	4
3. Crystallographic data for compound 6·H ₂ O and salts 7·2H ₂ O	5
4. X-ray Diffraction	5
5. Copies of Spectra	10

1. Computation data

Calculations were performed by using the Gaussian 09 suite of programs. The geometric optimization of all the structures and frequency analyses for calculation of heats of formation was carried out by using B3-LYP functional^[1] with 6-311+G** basis set,^[2] All of the optimized structures were characterized to be local energy minima on the potential surface without any imaginary frequencies. The heats of formation (HOF) of the title compounds were computed through appropriate isodesmic reactions (Scheme S1 and S2). The isodesmic reaction processes, i.e., the number of each kind of formal bond is conserved, are used with application of the bond separation reaction (BSR) rules. The molecule is broken down into a set of two heavy-atom molecules containing the same component bonds. The isodesmic reactions used to derive the HOF of the title compounds are in Scheme S1. The change of enthalpy for the reactions at 298 K can be expressed as

$$\Delta H_{298K} = \sum \Delta_f H_P - \sum \Delta_f H_P \tag{1}$$

where $\Delta_f H_R$ and $\Delta_f H_P$ are the HOF of reactants and products at 298 K, respectively, and ΔH_{298K} can be calculated using the following expression:

$$\Delta H_{298} = \Delta E_{298} + \Delta (PV) = \Delta E_0 + \Delta ZPE + \Delta H_T + \Delta nRT \tag{2}$$

where E_0 is the change in total energy between the products and the reactants at 0 K; ΔZPE is the difference between the zero-point energies (*ZPE*) of the products and the reactants at 0 K; ΔHT is thermal correction from 0 to 298 K. The $\Delta(PV)$ value in eq (2) is the *PV* work term. It equals ΔnRT for the reactions of ideal gas. For the isodesmic reactions, $\Delta n = 0$, so $\Delta(PV) = 0$. On the left side of Eq. (1), apart from target compound, all the others are called reference compounds. The HOF of reference compounds are available either from the experiments ^[3-5]or from the high level computing like CBS-4M.

Scheme S1. Isodesmic and tautomeric reactions for 1-4 to calculate the HOF.

For energetic salts, the solid-phase heat of formation is calculated on the basis of a Born-Haber energy cycle ^[6](Scheme S3). The number is simplified by equation 3:

Scheme S2. Born-Haber Cycle for the Formation of energetic salts

$$\Delta H_{f}^{0}(salt,298K) = \Delta H_{f}^{0}(cation,298K) + \Delta H_{f}^{0}(anion,298K) - \Delta H_{L}$$
(3)

in which ΔH_L can be predicted by using the formula suggested by Jenkins, et al.(equation 4)

$$\Delta H_{L} = U_{POT} + \left[p(n_{M} / 2 - 2) + q(n_{X} / 2 - 2) \right] RT$$
(4)

In this equation, n_M and n_X depend on the nature of the ions Mp+ and Xq-, respectively. The equation for lattice potential energy U_{pol} (equation 5) has the form:^[6]

$$U_{POT}\left[kJ.mol^{-1}\right] = \gamma \left(\rho_m / M_m\right)^{1/3} + \delta$$
⁽⁵⁾

where $\rho_m [g \text{ cm}^{-3}]$ is the density of the salt, M_m is the chemical formula mass of the ionic material, and values for g and the coefficients γ (kJ mol⁻¹ cm) and δ (kJ mol⁻¹) are assigned literature values.^[7]

 Table S1 Ab initio computational values of small molecules used in isodesmic and tautomeric reactions

Compound	E_0^a	ZPE ^b	H_T^c	HOF ^d
5	-1023.797084	472.12	47.78	555.0
6	-0.03116268	45.38	-25.36	737.6
7	-1432.862745	486.27	59.11	791.8
Anion	-1431.702776	413.66	59.39	699.37 ^e
NH ₂ NO ₂	-261.1248168	98.79	12.39	-3.9
CH ₃ NO ₂	-245.0915559	124.93	11.6	-80.8
CH ₃ NH ₂	-95.8938402	160.78	11.64	-22.5
-NHNO ₂	-259.936099	65.95	11.23	-84.0
	-242.3203873	150.39	12.06	192.7
HN-N	-226.2603313	179.2	12.57	177.4

^{*a*}Total energy calculated by B3LYP/6-311+G**method (a.u);^{*b*}zero-point correction (kJ mol⁻¹); ^{*c*} thermal correction to enthalpy (kJ mol⁻¹); ^{*d*} heat of formation (kJ mol⁻¹). ^{*e*}HOF(s) = HOF(g) (543.2)+ $\Delta H_L(156.17)$

2. References

(a) A. D. Becke, J. Phys. Chem., 1993, 98, 5648; (b) P. J. Stephens, F. J. Devlin, C.
 F. Chabalowski and M. J.Frisch, *J. Phys. Chem.*, 1994, 98, 11623.
 P. C.Hariharan and J. A. Pople, *Theoretica Chimica Acta*, 1973, 28, 213.
 D. R. Lide, CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008), CRC Press/Taylor and Francis, Boca Raton, FL, 2007-2008.
 N. Fischer, T. M. Klapötke and J. Stierstorfer, *Anorg. Allg. Chem.*, 2009, 635, 271.

[5] Y. H. Joo, J. H. Chung, S. G. Cho and E. M. Goh, New J. Chem., 2013, 37, 1180.

[6] Jenkins, H. D. B.; Tudela, D.; Glasser, Inorg. Chem. 2002, 41, 2364-2367.

[7] H. D. B. Jenkins, D. Tudeal and L. Glasser, Inorg. Chem., 2002, 41, 2364-236.

3. Crystallographic data for compounds 6.2H₂O and 7.H₂O

5		
Empirical formula	$C_7H_7N_{11}O_8$	C ₇ H ₇ N ₁₃ O ₇
Formula weight	373.24	385.26
Temperature [K]	173	173
Crystal system	monoclinic	triclinic
Space group	$P2_{1}/c$	<i>P</i> -1(2)
<i>a</i> [Å]	5.0463(5)	8.6518(13)
b[Å]	14.9379(12)	8.7863(13)
$c[\text{\AA}]$	18.6918(18)	9.9600(14)

Table S2.Crystallographic data for the compounds $6.2H_2O$ and $7.H_2O$

α[°]	90	83.380(5)
β [°]	93.903(9)	66.139(5)
γ[°]	90	76.502(5)
Volum[A ³]	1405.7	673.11
Ζ	4	2
$\rho_{\rm cal}({\rm g.cm^{-3}})$	1.764	1.901
$\mu(mm^{-1})$	0.159	0.169
F(000)	424.0	392.0
Crystal size [mm ³]	0.210×0.110×0.090	0.090×0.070×0.050
Radiation	ΜοΚα(λ=0.71073)	ΜοΚα(λ=0.71073)
2Θ range for data	4.368 to 53.992	6.334 to 50.042
collection/°		
Index ranges	-10≤h≤10,	-10≤h≤10,
	-10≤k≤11,	-10≤k≤10,
	-12 <u>≤</u> 1≤12	-11 <u><1</u> <11
Reflections collected	11323	5838
Goodness-of-fit on F ²	1.053	1.048
Final R indexes [I>= 2σ (I)]	$R_1^{\circ}=0.0486, wR_2^{\circ}=0.1127$	$R_1^{\circ}=0.0721, wR_2^{\circ}=0.1423$
Final R indexes [all data]	$R_1^{\circ}=0.0806, wR_2^{\circ}=0.1280$	$R_1^{\circ}=0.1343, wR_2^{\circ}=0.1730$
CCDC	1877695	1854906

4. X-ray Diffraction

Parameter	Bond length(Å)	Parameter	Bond length(Å)
O1-N6	1.215(3)	N5-C5	1.332(3)
O2-N6	1.212(3)	N6-C4	1.451(3)
O3-N7	1.227(3)	N7-C2	1.419(3)
O4-N7	1.221(3)	N8-C7	1.341(3)
O5-N11	1.215(3)	N8-N9	1.346(3)
O6-N11	1.213(3)	N9-C6	1.308(3)
O7-H7A	0.85(3)	N10-C7	1.330(3)
O7-H7B	0.83(3)	N10-C6	1.333(3)
O8-H8A	0.81(2)	N11-C6	1.456(3)
O8-H8B	0.80(2)	N1-H1	0.88(2)
N1-N2	1.342(3)	N3-H3	0.86(2)
N1-C3	1.339(3)	N8-H8	0.86(2)
N2-C1	1.333(3)	C1-C2	1.411(3)
N3-N4	1.352(3)	C1-C5	1.462(3)
N3-C5	1.333(3)	C2-C3	1.394(3)
N4-C4	1.306(3)	C3-C7	1.460(3)
N5-C4	1.332(3)		

Table S3. Selected bond lengths [Å] for compound $6.2H_2O$

		0 1 1	-
Parameter	Bond Angles(°)	Parameter	Bond Angles(°)
H7A-O7-H7B	105(3)	N9-N8-H8	118.0(17)
H8A-O8-H8B	104(4)	C7-N8-H8	132.1(17)
N2-N1-C3	113.89(18)	N2-C1-C5	115.98(18)
N1-N2-C1	105.63(18)	C2-C1-C5	134.45(19)
N4-N3-C5	111.02(19)	N2-C1-C2	109.44(18)
N3-N4-C4	100.14(19)	N7-C2-C3	125.8(2)
C4-N5-C5	101.30(19)	C1-C2-C3	106.29(18)
O1-N6-O2	125.6(2)	N7-C2-C1	127.95(19)
O2-N6-C4	117.7(2)	N1-C3-C2	104.73(18)
O1-N6-C4	116.7(2)	N1-C3-C7	117.61(18)
O3-N7-C2	119.68(19)	C2-C3-C7	137.6(2)
O3-N7-O4	123.1(2)	N4-C4-N5	118.1(2)
O4-N7-C2	117.24(19)	N4-C4-N6	120.1(2)
N9-N8-C7	109.95(19)	N5-C4-N6	121.8(2)
N8-N9-C6	101.26(19)	N3-C5-N5	109.48(19)
C6-N10-C7	101.29(19)	N5-C5-C1	121.99(19)
O6-N11-C6	117.7(2)	N3-C5-C1	128.5(2)
O5-N11-O6	124.5(2)	N9-C6-N11	121.2(2)
O5-N11-C6	117.9(2)	N10-C6-N11	121.4(2)
N2-N1-H1	118.0(15)	N9-C6-N10	117.4(2)
C3-N1-H1	128.1(15)	N8-C7-C3	129.9(2)
N4-N3-H3	120.6(17)	N10-C7-C3	120.00(19)
С5-N3-Н3	128.2(17)	N8-C7-N10	110.07(19)
	Table S5. Selected torsion	angles [°] for compound	6 •2H ₂ O
Parameter	Torsion Angles(°)	Parameter	Torsion Angles(°)
C3-N1-N2-C1	1.0(2)	N8-N9-C6-N10	0.1(3)
N2-N1-C3-C7	175.35(18)	C7-N10-C6-N9	0.1(3)
N2-N1-C3-C2	-1.6(2)	C6-N10-C7-C3	-178.4(2)
N1-N2-C1-C5	-176.41(18)	C7-N10-C6-N11	-179.5(2)
N1-N2-C1-C2	0.2(2)	C6-N10-C7-N8	-0.2(2)
N4-N3-C5-C1	-176.6(2)	O5-N11-C6-N10	171.2(2)
C5-N3-N4-C4	-0.3(2)	O6-N11-C6-N10	-8.8(3)
N4-N3-C5-N5	0.6(3)	O6-N11-C6-N9	171.7(2)
N3-N4-C4-N6	176.8(2)	O5-N11-C6-N9	-8.4(3)
N3-N4-C4-N5	-0.2(3)	C2-C1-C5-N3	-1.5(4)
C5-N5-C4-N6	-176.4(2)	N2-C1-C2-N7	178.0(2)
C5-N5-C4-N4	0.5(3)	C5-C1-C2-N7	-6.3(4)
C4-N5-C5-C1	176.8(2)	C5-C1-C2-C3	174.6(2)
C4-N5-C5-N3	-0.6(2)	N2-C1-C5-N3	174.0(2)
O2-N6-C4-N4	153.2(2)	N2-C1-C5-N5	-2.9(3)

Table S4 Selected bond angles [°] for compound $6{\cdot}2\mathrm{H_2O}$

O1-N6-C4-N5	148.2(2)		N2-C1-C2-C3	-1.1(2))
O2-N6-C4-N5	-30.1(3)		C2-C1-C5-N5	-178.3	(2)
O1-N6-C4-N4	-28.6(3)		C1-C2-C3-C7	-174.4	(2)
O4-N7-C2-C3	2.7(3)		N7-C2-C3-N1	-177.6	(2)
O3-N7-C2-C3	-178.7(2)	N7-C2-C3-C7	6.4(4)	
O4-N7-C2-C1	-176.3(2)	C1-C2-C3-N1	1.6(2)	
O3-N7-C2-C1	2.3(3)		N1-C3-C7-N8	-176.1	(2)
C7-N8-N9-C6	-0.2(2)		C2-C3-C7-N10	177.4((2)
N9-N8-C7-C3	178.3(2)		N1-C3-C7-N10	1.7(3)	
N9-N8-C7-N10	0.3(3)		C2-C3-C7-N8	-0.5(4))
N8-N9-C6-N11	179.7(2)				
	Table S6. Hy	drogen bond	s present in compoun	d 6 ·2H₂O	
D-H…A	d(D····H)/Å	H···A/Å	D-H···A/Å	<dha td="" °<=""><td>comment</td></dha>	comment
N1-H1…O7	0.88(2)	1.81(2)	2.693(3)	176(2)	inter
N3-H3…O3	0.86(2)	2.04(2)	2.690(3)	132(2)	intra
N3-H3…O6	0.86(2)	2.44(3)	3.156(3)	141(2)	inter
O7-H7A…N5	0.85(3)	2.01(3)	2.850(3)	168(3)	inter
O7-H7B…N10	0.83(3)	2.45(3)	2.883(3)	114(2)	inter
N8-H8…O4	0.86(2)	2.15(2)	2.706(3)	123(2)	intra
N8-H8…O8	0.86(2)	1.92(2)	2.722(3)	154(2)	inter
O8-H8A…N4	0.81(2)	2.33(2)	3.121(3)	167(4)	inter
O8-H8B…N9	0.80(2)	2.14(3)	2.928(3)	172(3)	inter
	Table S7. Sel	ected bond le	engths [Å] for compou	and $7 \cdot H_2O$	
Parameter	Bond len	gth(Å)	Parameter	Bond	length(Å)
01-N7	1.234(6)		N8-C2	1.431	(8)
O2-N7	1.255(6)		N9-N10	1.385	(6)
O3-N8	1.244(6)		N9-C7	1.305	(7)
O4-N8	1.226(6)		N10-C6	1.330	(6)
O5-N13	1.245(6)		N11-C7	1.371	(6)
O6-N13	1.238(6)		N11-C6	1.353	(7)
O7-H7B	0.83(5)		N12-N13	1.349	(6)
07 - H7A	0.83(5)		N12-C6	1.346	(6)
N1-C3	1.341(7)		N1-H1	0.90(:	5)
N1-N2	1.356(6)		N4-H4	0.89(3	3)
N2-C1	1.333(7)		N5-H5	0.90(4	4)
N3-C5	1.300(7)		N10-H10	0.90(4	4)
N3-N4	1.369(5)		N11-H11	0.90(4	4)
N4-C4	1.333(6)		C1-C2	1.419	(8)
N5-C5	1.353(6)		C1-C5	1.462	(7)
N5-C4	1.358(6)		C2-C3	1.381	(7)
N6-N7	1.341(6)		C3-C7	1.454	(7)
N6-C4	1.337(6)				

Table S8. Selected bond angles [°] for compound $7 \cdot H_2O$

Parameter	Bond Angles(°)	Parameter	Bond Angles(°)
H7A-O7-H7B	96(5)	N9-N10-H10	121(3)
N2-N1-C3	113.5(5)	C6-N10-H10	127(4)
N1-N2-C1	105.0(4)	C7-N11-H11	131(3)
N4-N3-C5	103.5(4)	C6-N11-H11	122(3)
N3-N4-C4	112.3(4)	C2-C1-C5	132.6(5)
C4-N5-C5	107.0(4)	N2-C1-C5	117.4(5)
N7-N6-C4	116.7(4)	N2-C1-C2	110.0(4)
O1-N7-N6	116.6(4)	N8-C2-C3	128.2(5)
O2-N7-N6	121.4(4)	C1-C2-C3	105.9(5)
O1-N7-O2	122.0(4)	N8-C2-C1	125.6(5)
O3-N8-C2	117.5(4)	C2-C3-C7	133.8(5)
O4-N8-C2	118.6(4)	N1-C3-C2	105.7(5)
O3-N8-O4	123.8(5)	N1-C3-C7	120.5(5)
N10-N9-C7	103.7(4)	N4-C4-N5	104.9(4)
N9-N10-C6	111.7(4)	N4-C4-N6	135.0(4)
C6-N11-C7	106.9(4)	N5-C4-N6	120.1(4)
N13-N12-C6	115.2(4)	N3-C5-N5	112.2(4)
O5-N13-N12	116.1(4)	N3-C5-C1	122.3(4)
O6-N13-N12	121.8(4)	N5-C5-C1	125.4(5)
O5-N13-O6	122.2(4)	N11-C6-N12	119.5(4)
C3-N1-H1	134(4)	N10-C6-N11	106.0(4)
N2-N1-H1	112(4)	N10-C6-N12	134.5(5)
C4-N4-H4	126(4)	N9-C7-C3	125.0(4)
N3-N4-H4	121(4)	N11-C7-C3	123.1(4)
C4-N5-H5	124(3)	N9-C7-N11	111.7(4)
C5-N5-H5	128(3)		

Table S9 Selected torsion angles [°] for compound $7{\cdot}\mathrm{H_2O}$

		e []	-
Parameter	Torsion Angles(°)	Parameter	Torsion Angles(°)
C3-N1-N2-C1	0.8(7)	N9-N10-C6-N11	1.4(7)
N2-N1-C3-C7	178.0(5)	C6-N11-C7-C3	-175.2(6)
N2-N1-C3-C2	-1.0(7)	C6-N11-C7-N9	0.9(8)
N1-N2-C1-C5	179.1(5)	C7-N11-C6-N12	177.9(6)
N1-N2-C1-C2	-0.2(6)	C7-N11-C6-N10	-1.3(7)
N4-N3-C5-C1	176.9(6)	N13-N12-C6-N11	-169.3(6)
C5-N3-N4-C4	-0.8(7)	C6-N12-N13-O6	-1.2(9)
N4-N3-C5-N5	0.7(7)	N13-N12-C6-N10	9.6(11)
N3-N4-C4-N6	-179.4(7)	C6-N12-N13-O5	176.4(6)
N3-N4-C4-N5	0.6(7)	N2-C1-C5-N5	130.8(6)
C5-N5-C4-N4	-0.1(7)	N2-C1-C5-N3	-44.8(9)
C4-N5-C5-C1	-176.5(6)	N2-C1-C2-N8	173.1(5)
C4-N5-C5-N3	-0.4(8)	C5-C1-C2-N8	-6.0(10)
C5-N5-C4-N6	179.9(6)	C2-C1-C5-N3	134.2(7)

N7-N6-C4-N5	179.3(6)	C2-C1-C5-N5	-50.1(11)	
C4-N6-N7-O2	-0.2(9)	C5-C1-C2-C3	-179.5(6)	
N7-N6-C4-N4	-0.7(11)	N2-C1-C2-C3	-0.4(7)	
C4-N6-N7-O1	-178.9(6)	N8-C2-C3-C7	8.7(11)	
O4-N8-C2-C3	173.6(5)	N8-C2-C3-N1	-172.4(5)	
O4-N8-C2-C1	1.6(8)	C1-C2-C3-N1	0.8(6)	
O3-N8-C2-C3	-4.3(8)	C1-C2-C3-C7	-178.0(6)	
O3-N8-C2-C1	-176.3(5)	C2-C3-C7-N9	47.3(11)	
N10-N9-C7-C3	175.9(6)	C2-C3-C7-N11	-137.2(7)	
C7-N9-N10-C6	-0.9(7)	N1-C3-C7-N9	-131.4(7)	
N10-N9-C7-N11	0.0(7)	N1-C3-C7-N11	44.1(9)	
N9-N10-C6-N12	-177.6(7)			
Table S10. Hydrogen bonds present in compound $7 \cdot H_2O$				
D-H···A	$d(D \cdots H)/Å = d(H \cdots A)/Å$	d(D-H···A)/Å	<dha(°) comment<="" td=""></dha(°)>	

D-H···A	d(D…H)/Å	d(H···A)/Å	d(D-H···A)/Å	<dha(°)< th=""><th>comment</th></dha(°)<>	comment
N1-H1…O7	0.90(5)	1.82(5)	2.694(7)	164(4)	inter
N4-H4…O2	0.89(3)	2.15(5)	2.584(5)	109(4)	intra
N4-H4···O3	0.89(3)	1.98(4)	2.803(5)	153(5)	inter
N5-H5…N6	0.90(4)	1.92(5)	2.809(6)	170(4)	Inter
O7 - H7A…O2	0.83(5)	2.07(5)	2.884(6)	171(5)	inter
O7 - H7B…O6	0.83(5)	2.39(5)	2.803(6)	112(4)	inter
N10-H10…O6	0.90(4)	2.13(5)	2.553(6)	108(4)	intra
N10-H10…N2	0.90(4)	2.46(4)	3.339(6)	165(6)	inter
N11-	0.00(4)	2.01(4)	2 804(6)	166(4)	intor
H11…N12	0.90(4)	2.01(4)	2.094(0)	100(4)	inter

5. Copies of Spectra

5.1 ¹H and ¹³C NMR spectra of the compounds 5-16

Figure S2 ^{13}C spectra (125 MHz) of 5 in DMSO-d₆ at 25 $^\circ\text{C}$

Figure S4 $^{13}\mathrm{C}$ spectra (125 MHz) of 6 in DMSO-d₆ at 25 °C

Figure S6¹³C NMR spectra (300 MHz) of 7 in DMSO-d₆ at 25 °C

Figure S8 13 C spectra (125 MHz) of 8 in DMSO-d₆ at 25 °C

Figure S10 ¹³C spectra (125 MHz) of 9 in DMSO-d₆ at 25 °C

^Figure S12 ¹³C spectra (125 MHz) of 10 in DMSO-d₆ at 25 °C

Figure S14 13 C spectra (125 MHz) of 11 in DMSO-d₆ at 25 °C

Figure S16¹³C spectra (125 MHz) of 12 in DMSO-d₆ at 25 °C

Figure S18 13 C spectra (125 MHz) of 13 in DMSO-d₆ at 25 °C

Figure S20¹³C spectra (125 MHz) of 14 in DMSO-d₆ at 25 °C

Figure S22 ¹³C spectra (125 MHz) of 15 in DMSO-d₆ at 25 °C

Figure S24 ¹³C spectra (125 MHz) of 16 in DMSO-d₆ at 25 °C

5.2 DSC curves of the compounds 5-16

Figure S26 DSC curve of parent compound 6

Figure S29 DSC curve of salt 9

Figure S30 DSC curve of salt 10

Figure S32 DSC curve of salt 12

Figure S34 DSC curve of salt 14

Figure S36 DSC curve of salt 16