Supplementary Information page 1 of 38

Highly efficient structurally characterised novel precatalysts, di- and mono nuclear heteroleptic Cu(I) dixanthate/xanthate-phosphine complexes for azide-alkyne cycloadditions

Anamika,^a Anand K. Agrahari,^a Krishna K. Manar,^a Chote Lal Yadav,^a Vinod K. Tiwari,^a Michael G. B. Drew^b and Nanhai Singh^{*a}

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India. ^bDepartment of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK E-mail: <u>nsinghbhu@gmail.com</u>, <u>nsingh@bhu.ac.in</u>

Table of Contents

S1: Characterisation data for ligands K₂L1-K₂L3 and KL4-KL5

Fig. S1: UV-vis spectra of ligands K_2L1 -KL5 in methanol solution

Fig. S2: Non-covalent interactions in complexes 1–5

Table S1: Selected bond lengths (Å) and angles (°) for complexes 1–5

Table S2: Weak secondary interactions and their parameters observed in compounds 1–5

Table S3 Reaction time optimisation of catalyst 1 for Click reaction

S2: The synthesis of various triazolyl linked glycoconjugates (8a–i)

S3: ¹H, ¹³C and time dependent ³¹P spectra of dinuclear complex 1 and mononuclear 4

S4: ¹H and ¹³C spectra of triazolyl glycoconjugates (**8a**–i)

S5: References

S1: Synthesis of Xanthate Ligands

The potassium salts of dixanthate, K_2L1-K_2L3 and xanthate, KL4-KL5 ligands were synthesised according to the following general procedure. To a stirred 15 mL THF solution of 2,6-pyridinedimethanol (0.139 g, 1mmol), 1,4-benzenedimethanol (0.138 g, 1 mmol), 1,4-cyclohexanediol (0.116 g, 1 mmol), piperonyl alcohol (0.304 g, 2 mmol) and methanol (0.064 g, 2 mmol) was added a pulverized KOH (0.112 g, 2 mmol) and 1.20 mL carbon disulfide (0.152 g, 2 mmol) in each case and the reaction mixture was stirred overnight in an ice bath maintain the temperature around 6 °C. The solvent was removed on a rotary evaporator to yield cream to light yellow coloured solid which was washed with ethanol followed by diethyl ether.

Characterisation

K₂**L1**. Yield: (0.249 g, 68%). Anal. Calcd for C₉H₇N₁K₂O₂S₄ (367.61): C 29.40, H 1.92, N 3.81; Found: C 29.42, H 1.90, N 3.78. IR (KBr, cm⁻¹): 1122 (v_{C-O}), 1055 (v_{C-S}). ¹H NMR (500 MHz, DMSO–*d*₆)δ (ppm): 7.74 –7.16 (m, 3H, $-C_5H_3N$), 5.40 (s, 4H, $-\{OCH_2\}_2-C_5H_3N$). ¹³C{¹H} NMR (125 MHz, DMSO–*d*₆) δ (ppm): 229.62 ($-CS_2$), 73.04 ($-OCH_2$), 161.66 – 118.73 ($-C_5H_3N$). UV-vis (MeOH, λ_{max} (nm), ε (M⁻¹ cm⁻¹)): 305 (0.36 × 10⁵), 265 (0.21 × 10⁵), 230 (0.25 × 10⁵), 208 (1.98 × 10⁵).

K₂**L2**. Yield: (0.271 g, 74%). Anal. Calcd for C₁₀H₈K₂O₂S₄ (366.63): C 32.76, H 2.20; found: C 32.79, H 2.19. IR (KBr, cm⁻¹): 1098 (v_{C-O}), 1073 (v_{C-S}). ¹H NMR (500 MHz, DMSO–*d*₆) δ (ppm): 7.26 –7.21 (m, 4H, Ar–H), 5.29 (s, 4H, –{OCH₂}₂–C₆H₄). ¹³C{¹H} NMR (125 MHz, DMSO–*d*₆) δ (ppm): 230.00 (–CS₂), 72.35 (–OCH₂), 141.36 –126.76 (Ar–C). UV–vis (MeOH, λ_{max} (nm) ε (M⁻¹ cm⁻¹)): 305 (1.15 × 10⁵), 225 (1.66 × 10⁵), 210 (1.84 × 10⁵).

K₂**L3**. Yield: (0.244 g, 71%). Anal. Calcd for C₈H₁₀K₂O₂S₄ (344.62): C 27.88, H 2.92; Found: C 27.81, H 2.89.IR (KBr, cm⁻¹): 1137 (v_{C-O}), 1030 (v_{C-S}). ¹H NMR (500 MHz, DMSO– d_6)δ (ppm): 1.92–1.076 (m, 8H, ax/eq {-OCH}₂–C₄H₈–), 5.23-5.15 (m, ax/eq 2H, {-OCH}₂–C₄H₈). ¹³C{¹H} NMR (125 MHz, DMSO– d_6) δ (ppm): 229.53 (-CS₂), 77.62 ({-OCH}₂–C₄H₈), 33.16 -27.16 ({-OCH}₂–C₄H₈). UV-vis. (MeOH, λ_{max} (nm), ε (M⁻¹ cm⁻¹)): 305 (1.33 × 10⁵), 230 (1.00 × 10⁵), 210 (0.63 × 10⁵). **KL4**. Yield: (0.420 g, 79%). Anal. Calcd for C₉H₇K₁O₃S₂ (266.38): C 40.58, H 2.65.Found: C 41.42, H 2.64. IR (KBr, cm⁻¹): 1093 (v_{C-O}), 1059 (v_{C-S}).¹H NMR (500 MHz, DMSO– d_6)δ (ppm): 6.86 –6.77

(m, 3H, Ar –H), 5.20 (s, 2H, –OCH₂), 5.95 (s, 2H, –O–CH₂–O–). ¹³C{¹H} NMR (125 MHz, DMSO– d_6) δ . (ppm): 229.02 (–CS₂), 71.83 (–OCH₂), 99.24 (–O–CH₂–O–). 145.35 –106.91 (Ar –C). UV-vis (MeOH, λ_{max} (nm), ε (M⁻¹ cm⁻¹)): 303 (0.80 × 10⁵), 280 (0.63 × 10⁵), 215 (2.24 × 10⁵).

KL5. Yield: (0.234 g, 80%). Anal. Calcd for C₂H₃K₁O₁S₂ (146.27): C 16.42, H 2.07.Found: C 16.40, H 2.06. IR (KBr, cm⁻¹): 1107 (ν_{C-O}), 1048 (ν_{C-S}).¹H NMR (500 MHz, DMSO–*d*₆) δ (ppm): 3.67 (s, 3H, –OCH₃) ¹³C{¹H} NMR (125 MHz, DMSO–*d*₆) δ (ppm): 231.00 (–CS₂), 58.13 (–OCH₃). UV-vis (MeOH, λ_{max} (nm), ε (M⁻¹ cm⁻¹)): 305 (0.41 × 10⁵), 225 (0.22 × 10⁵), 210 (0.20 × 10⁵).

Fig. S1. UV-vis spectra of ligands 1-5 in methanol solution

Fig. S2. Non-covalent interactions in 1–5

Fig. S2. 1 Supramolecular structures of **1** sustained by H···H interaction (hydrogen atoms, except those involved in the interactions, are omitted for clarity)

Fig. S2. 2 (a) Intramolecular C–H··· π (CuS₂C, chelate) and (b) intermolecular C–H··· π interactions in complex 2

а

Supplementary Information page 5 of 38

Fig. S2. 3 C–H···O interactions in complex **3** and **4** (hydrogen atoms, except those involved in the interactions, are omitted for clarity)

Fig. S2. 4 C–H··· π , C–H···O interactions in complex **5** (hydrogen atoms except those involved in the interactions and some carbon skeleton are omitted for clarity)

	1	2	3	3*	4	5A	5B
Bond lengths							
Cu(1) - P(1)	2.2435(16)	2.2651(9)	2.2549(14)	2.2333(14)	2.2309(6)	2.246(3)	2.242(4)
Cu(1) - P(2)	2.2464(15)	2.2510(9)	2.2430(14)	2.2450(14)	2.2457(6)	2.243(4)	2.262(3)
Cu(1) - S(11)	2.378(2)	2.4428(9)	2.4388(15)	2.3898(15)	2.3881(6)	2.367(4)	2.416(4)
Cu(1) - S(13)	2.4495(17)	2.4122(9)	2.3752(16)	2.4187(16)	2.4235(7)	2.423(4)	2.371(4)
S(11) - C(12)	1.658(8)	1.675(3)	1.677(6)	1.686(6)	1.698(2)	1.690(14)	1.680(13)
S(13) - C(12)	1.685(8)	1.697(3)	1.651(6)	1.677(6)	1.687(2)	1.658(15)	1.672(13)
C(12) - O(14)	1.436(10)	1.344(4)	1.367(6)	1.351(6)	1.333(3)	1.364(14)	1.352(13)
Angles							
P(1)-Cu(1)-P(2)	123.27(6)	122.06(3)	126.57(6)	128.77(6)	125.21(2)	111.82(13)	114.58(12)
P(1)-Cu(1)-S(11)	114.26(7)	113.62(3)	102.76(5)	111.59(5)	117.51(2)	110.66(14)	121.17(13)
P(2)-Cu(1)-S(11)	113.22(8)	111.56(4)	112.66(6)	110.28(6)	104.29(2)	122.22(15)	108.53(13)
P(1)-Cu(1)-S(13)	112.73(7)	105.25(3)	113.91(6)	114.62(6)	112.79(2)	114.80(14)	119.93(14)
P(2)-Cu(1)-S(13)	108.16(6)	120.41(3)	113.25(6)	103.25(5)	110.80(2)	117.75(13)	110.99(12)
S(11)–Cu(1)–S(13)	74.71(7)	74.52(3)	74.64(5)	75.58(5)	75.29(2)	75.09(13)	75.70(13)
C(12)-S(11)-Cu(1)	82.8(2)	81.73(12)	80.1(2)	81.06(18)	81.52(8)	82.3(5)	80.2(4)
C(12)-S(13)-Cu(1)	80.0(2)	82.25(12)	82.59(19)	80.35(19)	82.40(8)	81.2(5)	81.7(4)
S(11)–C(12)–S(13)	122.4(4)	121.4(2)	122.6(3)	122.4(3)	120.48(13)	121.4(8)	122.4(7)

Table S1: Selected bond lengths (Å) and angles (°) for complexes 1-5

* this column gives the comparable coordination geometry around Cu(2) in complex 3

Fable S2: Weak seconda	ry interactions a	and their para	meters observe	ed in compounds 1-5
-------------------------------	-------------------	----------------	----------------	---------------------

Donor (D)-acceptor (A) hydrogen bonds (Å, °)							
Complex	D–H···A	$d(H \cdot \cdot \cdot A)$	d(D…A)	∠D–H…A	Symmetry		
					Element		
3	С(115)-Н(115)… О(14)	2.50	3.304(8)	144	1-x,1/2+y,3/2-z		
	C(84)–H(84)···· O(23)	2.71	3.525(8)	146	1+x,y,z		
4	C(74)–H(74)···· O(19)	2.62	3.252(5)	125	-x, 2-y, -z		
	C(56)–H(56)···· O(18)	2.68	3.273(5)	121	x, -1+y,z		

5	C(66A)–H(66A)···· O(14A)	2.63	3.375(4)	137	¹ / ₂ -x, y,1/2+z			
	C(35A)–H(35A)···· O(14A)	2.71	3.322(4)	124	x,1+y,z			
H···H and C–H··· π interactions in 1-5, distances in Å								
Complex	Н…Н		Н…Н		Symmetry element			
1	H(64)····H(42)		2.29		(1+x,-1+y,z)			
Complex	С–Н…π	С–Н…π		Symmetry element				
1	С(72)–Н(72)… π (С61–С66)	3.33		1-x,1-y,1-z				
2	С(43)–Н(43)… π (С71–С76)	3.15		x,1+y,z				
3	С(135)-Н(135)… π(С31-С3	3.17		x,3/2-y,1/2+z				
	С(55)-Н(55)… π(С121-С12	3.13		x,3/2-y,-1/2+z				
4	С(20)-Н(20)… π (С51-С56)		2.70		-x,2-z,1-z			
	С(85)–Н(85)… π (С21–С26)	3.32		1+x,y,z				
5	С(44А)–Н(44А)… π (С31В–С36В)		3.20		1-x,2-y,-1/2+z			
	С(45А)–Н(45А)···· π (С41В–С46В)		3.25		x,y,z			
	С(46А)Н(46А)···· π (С41ВС46В)		3.32		X,y,Z			
	С(53А)–Н(53А)···· π (С61А–С66А)		2.85		x,1+y,z			
	С(42А)–Н(42А)… π (С81А–С85А)		3.48		¹ / ₂ -x,y,1/2+z			
	С(63А)–Н(63А) π (С81В–С85В)		2.94		x,y,z			
	С(83B)-H(83B)···· π (C81B–C85B)		2.77		x,-1+y,z			

Entry ^a	Catalyst	mol%	Time	Solvent ^c	Yield (%) ^g
			(minutes)		
1	1	3	5	CDCl ₃	33
2	1	3	15	CDCI ₃	41
3	1	3	30	CDCI ₃	50
4	1	3	60	CDCI ₃	69
5	1	3	90	CDCI ₃	84
6	1	3	105	CDCI ₃	91
7	1	3	120	CDCI ₃	95

 Table S3 Reaction time optimisation of catalyst 1 for Click reaction

^aEntry : sugar azide (1.0 equiv.) and alkyne(1.1 equiv.). ^cDry solvent. ^gYields reported after ¹H NMR study.

S2: The synthesis of various triazolyl linked glycoconjugates (8a-i)

1-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranos-1-yl)-4-phenyl-[1,2,3]-triazole (8a)¹

2,3,4,6-Tetra-*O*-acetyl- β -D-glucopyranosyl azide (100mg, 0.268 mmol) and phenylacetylene (32.4 µL, 0.295 mmol) were taken in dichloromethane (1.0 mL) in presence of Cu-catalyst **1** (11.8 mg, 8.03 µmol) to afford triazole derivative **8a**. Yield (95%), white solid, m.p. 200–202 °C, R_f = 0.5, (45% ethyl acetate/*n*-hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.02 (s, 1H), 7.82 (d, *J* = 6.5 Hz, 2H), 7.42–7.39 (m, 2H), 7.34–7.31 (m, 1H), 5.94 (d, *J* = 8.5 Hz, 1H), 5.52 (t, *J* = 9.5 Hz, 1H), 5.45–5.42 (m, 1H),5.26 (t, *J* = 9.5 Hz, 1H), 4.33–4.29 (m, 1H), 4.16–4.13 (m, 1H),4.05–4.02 (m, 1H), 2.06 (s, 6H), 2.02 (s, 3H), 1.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.4, 169.8, 169.3, 168.9, 148.4, 129.8, 128.7, 128.4, 125.8, 117.7, 85.6, 75.0, 72.6, 70.1, 67.6, 61.5, 20.5, 20.46, 20.43and 20.1 ppm.

1-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranos-1-yl)-4-(9-phenanthrene)- [1,2,3]-triazole (8b)

2,3,4,6-Tetra-*O*-acetyl- β -D-glucopyranosyl azide (100 mg, 0.268 mmol) and 9ethynylphenanthrene (60 mg, 0.295 mmol) were taken in dichloromethane (1 mL) in presence of Cu-catalyst **1** (11.8 mg, 8.03 µmol) to afford triazole derivative **8b.** Yield (96%), white solid,m.p.;168–170 °C; R_f = 0.40, (40% ethyl acetate/*n*-hexane); ¹H NMR (500 MHz, CDCl₃): δ 8.74 (d, *J* = 7.5 Hz, 1H), 8.68 (d, *J* = 8.5 Hz, 1H), 8.29 (d, *J* = 8.5 Hz, 1H), 8.16 (s, 1H), 7.99 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.68–7.59 (m, 4H), 6.03 (d, *J* = 9.5 Hz, 1H), 5.62 (t, *J* = 9.5 Hz, 1H), 5.50 (t, *J* = 9.5 Hz, 1H), 5.31 (t, *J* = 9.5 Hz, 1H), 4.35–4.32 (m, 1H), 4.20–4.18 (m, 1H), 4.11–4.06 (m, 1H), 2.07-2.03 (m, 9H), 1.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.4, 169.8, 169.3, 169.0, 147.3, 131.1, 130.6, 130.4, 129.8, 128.8, 128.6, 127.2, 126.9, 126.8, 126.7, 126.0, 125.8, 122.9, 122.4, 121.2, 85.9, 75.1, 72.5, 70.4, 67.7, 61.5, 20.6, 20.4, and 20.1 ppm.

1-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranos-1-yl)-4-(4-bromophenyl)-[1,2,3]-triazole (8c)¹

2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl azide (100 mg, 0.268 mmol), 1-bromo-4ethynylbenzene (53 mg, 0.293 mmol) were taken in dry dichloromethane (1.0 mL) in presence of Cu-catalyst **1** (11.8 mg, 8.03 μ mol) to afford the corresponding triazole **8c.** Yield (95%). White solid; m.p. = 214–217 °C; R_f = 0.50 (40% ethyl acetate/*n*-hexane); ¹H NMR (500.15 MHz, CDCl₃): δ 8.01 (s, 1H), 7.70 (d, *J* = 7.5 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 5.93 (d, *J* = 9.0 Hz, 1H), 5.52–5.42 (m, 2H), 5.28–5.24 (m, 1H), 4.34–4.30 (m, 1H), 4.16–4.13 (m, 1H), 4.05– 4.02 (m, 1H), 2.08-2.07 (m, 6H), 2.03 (s, 3H), 1.88 (s, 3H); ¹³C NMR (125.76 MHz, CDCl₃): δ 170.4, 169.8, 169.3, 169.0, 147.4, 132.0, 128.7, 127.3, 122.5, 117.8, 85.7, 75.1, 72.6, 70.1, 67.6, 61.5, 20.6, 20.5, 20.4, and 20.1 ppm.

1-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranos-1-yl)-4-(3-cyclohexenyl)-[1,2,3]-triazole (8d)¹

2,3,4,6-Tetra-*O*-acetyl- β -D-glucopyranosyl azide (100mg, 0.268 mmol) and 1-Ethynylcyclohexene (34.6 µL, 0.295 mmol) were taken in dichloromethane (1.0 mL) in presence of Cu-catalyst **1** (11.8 mg, 8.03 µmol) to afford triazole derivative **8d**. Yield (95%).off white solid, m.p. = 196–198 °C; R_f = 0.5 (40% ethyl acetate/*n*-hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.57 (s, 1H), 6.52 (s, 1H), 5.85 (d, *J* = 9.5 Hz, 1H), 5.44–5.36 (m, 2H), 5.22–5.18 (m, 1H), 4.27–4.24 (m, 1H), 4.10–4.07 (m, 1H), 3.99–3.97 (m, 1H), 2.31 (s, 2H), 2.15–2.11 (m, 2H), 2.03–2.02 (m, 6H), 1.98 (s, 3H), 1.83 (s, 3H), 1.71 (d, *J* = 5.5, 2H), 1.62 (d, *J* = 5.0, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 170.3, 169.7, 169.2, 168.8,149.9, 126.5, 125.8, 116.1, 85.4, 74.8, 72.6, 70.0, 67.6, 61.4, 26.1, 25.1, 22.2, 21.9, 20.5, 20.39, 20.36, and 20.0 ppm.

1-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-n-pentylphenyl)-[1,2,3]-triazole (8e)¹

2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranosyl azide (100 mg, 0.268 mmol), 1-ethynyl-4-pentylbenzene (57.3 μL, 0.321 mmol) were taken in dichloromethane (1.0 mL) in presence of Cu-catalyst **1** (11.8 mg, 8.03 μmol) to afford triazole derivative **8e.** Yield (96%).solid; m.p.= 170–176 °C; R_f = 0.5 (35% ethyl acetate/*n*-hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.97 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.26–7.22 (m, 2H), 5.93 (d, *J* = 9.5 Hz, 1H), 5.54–5.51 (m, 1H), 5.45–5.42 (m, 1H), 5.29–5.25 (m, 1H), 4.34–4.30 (m, 1H), 4.16–4.14 (m, 1H), 4.04–4.02 (m, 1H), 2.63-2.60 (m, 2H), 2.07–2.06 (m, 6H), 2.03 (s, 3H), 1.86 (s, 3H), 1.63–1.61 (m, 2H), 1.32–1.24 (m, 4H), 0.89-0.86 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.4, 169.8, 169.3, 168.9, 148.5, 143.5, 128.8, 127.1, 125.7, 117.3, 85.6, 75.1, 72.7, 70.1, 67.7, 61.5, 35.6, 31.3, 30.9, 29.6, 22.4, 20.6, 20.5, 20.4, 20.1, and 13.9 ppm.

1-(2,3,4,6-Tetra-*O*-acetyl-β-D-galactopyranos-1-yl)-4-(1,2;5,6-*O*-isopropylidene-3-*O*methyl-α-D-glucofuranos-3-yl)-[1,2,3]-triazole (8f)

2,3,4,6-tetra-*O*-acetyl- β -D-galactocopyranosyl azide (100 mg, 0.268 mmol), and 1,2,5,6-*O*-isopropylidene-3-*O*-propargyloxy- α -D-glucofuranos-3-yl (87.9 mg, 0.295 mmol) were taken in dichloromethane (1.0 mL) in presence of Cu-catalyst 1 (11.8 mg, 8.03 µmol) to afford triazole derivative **8f.** Yield (94%), off white solid; m.p. = 36–40 °C; R_f = 0.5 (50% ethyl acetate/*n*-hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.88 (s, 1H), 5.86–5.82 (m, 2H), 5.52–5.47 (m, 2H), 5.25–5.22 (m, 1H), 4.81–4.73 (m, 2H), 4.56 (d, *J* = 3.5 Hz, 1H), 4.29–4.15 (m, 3H), 4.12–4.05 (m, 3H), 4.01–3.95 (m, 2H), 2.17 (s, 3H), 2.01 (s, 3H), 1.97 (s, 3H), 1.85 (s, 3H), 1.45 (s, 3H), 1.38 (s, 3H), 1.35 (s, 3H), 1.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.2, 169.8, 169.6, 168.9, 145.5, 120.9, 111.7, 108.9, 105.2, 86.2, 82.4, 81.6, 81.0, 74.1, 72.4, 70.6, 67.8, 67.2, 66.8, 63.7, 61.0, 26.79, 26.71, 26.1, 25.3, 20.5, 20.3, and 20.1 ppm.

1-(2,3,4,6-Tri-*O*-acetyl-4- $O(2^{\circ},3^{\circ},4^{\circ},6^{\circ}$ -tetra-*O*-acetyl- β -D-galacopyranosyl)- β -D-glucopyranos-1-yl)4-(*n*-hexane)-[1,2,3]-triazole (8g)²

2,3,4,6-Tri-*O*-acetyl-4-O(2',3',4',6'-tetra-*O*-acetyl- β -D-galactopyranosyl)- β -D-glucopyranosyl azide (100 mg, 0.151 mmol), 1-octyne (24.7 µL, 0.179 mmol) were taken in dichloromethane (1 mL) in presence of Cu-catalyst **1** (6.7 mg, 4.5 µmol) to afford triazole derivative **8g**. Yield (96%); white solid; m.p. = 98-100 °C; $R_f = 0.45$, (50% ethyl acetate/*n*-hexane); ¹H NMR (500MHz, CDCl₃): δ 7.41 (s, 1H), 5.79–5.77 (m, 1H), 5.38–5.35 (m, 3H), 5.1–5.09 (m, 2H), 4.97–4.95 (m, 1H), 4.52–4.45 (m, 2H), 4.15–4.01 (m, 3H), 3.93–3.87 (m, 3H), 2.68 (t, *J* = 7.5

Hz, 2H), 2.14 (s, 3H), 2.08–2.04 (m, 12H), 1.95 (s, 3H), 1.84 (s, 3H),1.64–1.61 (m, 2H), 1.32– 1.28 (m, 2H), 0.87–0.84 (m, 3H); ¹³C NMR (125MHz, CDCl₃): δ 170.3, 170.1, 170.06, 170.01, 169.4, 169.1, 169.0, 149.0, 118.7, 101.0, 85.3, 75.8, 75.6, 72.6, 70.8, 70.7, 70.3, 69.0, 66.5, 61.7, 60.7, 31.4, 29.0, 28.7, 25.5, 22.4, 20.7, 20.6, 20.59, 20.56, 20.4, 20.1 and 13.9 ppm.

1-(2,3,4,6-Tetra-*O*-acetyl-β-D-galactopyranos-1-yl)-4-(2,3;5,6-di-*O*-isopropylidene-1-*O*-methyl-β-D-mannofuranos-1-yl)-[1,2,3]-triazole (8h)

2,3,4,6-tetra-*O*-acetyl- β -D-galactopyranosyl azide (100mg, 0.268 mmol), 2,3;5,6-di-*O*-isopropylidene-1-*O*-propargyloxy- β -D-mannofuranos-1-yl (87.9 mg, 0.295 mmol) were taken in dichloromethane (1 mL) in presence of Cu-catalyst **1** (11.8 mg, 8.03 µmol) to afford triazole derivative **8h**. Yield (93%); m.p. = 106 °C; R_f = 0.5, (50% ethyl acetate/*n*-hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.80 (s, 1H), 5.82 (d, *J* = 9.5 Hz, 1H), 5.54–5.50 (m, 2H), 5.24–5.21 (m, 1H), 5.04 (s, 1H), 4.77–4.74 (m, 2H), 4.61– 4.58 (m, 2H), 4.39–4.37 (m, 1H), 4.21–4.08 (m, 4H), 4.04-3.96 (m, 2H), 2.20 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H), 1.86 (s, 3H), 1.43 (s, 6H), 1.35 (s, 3H), 1.28 (s, 3H); ¹³C NMR (125.76 MHz, CDCl₃): δ 170.2, 169.8, 169.7, 169.0, 144.8, 121.0, 112.6, 109.1, 105.4, 86.1, 84.9, 80.5, 79.4, 73.9, 73.0, 70.7, 67.8, 66.84, 66.82, 61.1, 60.0, 26.7, 25.8, 25.1, 24.4, 20.5, 20.3 and 20.1 ppm.

1-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranos-1-yl)-4-(2,3;5,6-di-*O*-isopropylidene-1-*O*-methyl-β-D-mannofuranos-1-yl)-[1,2,3]-triazole (8i)

2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl azide (100 mg, 0.268 mmol) and 2.3:5.6-di-Oisopropylidene-1-O-propargyloxy- β -D-mannofuranos-1-yl (87.9 mg, 0.295mmol) were taken in dichloromethane (1.0 mL) in presence of Cu-catalyst 1 (11.8 mg, 8.03 µmol) to afford triazole derivative **8i.** Yield (94%); solid, m.p. = 108 °C, $R_f = 0.5$ (50% ethyl acetate/*n*-hexane); ¹H NMR $(500.15 \text{ MHz}, \text{CDCl}_3)$: δ 7.80 (s, 1H), 5.86 (d, J = 9.5 Hz, 1H), 5.47–5.37 (m, 2H), 5.28-5.21 (m, 1H), 5.069-5.065 (m, 1H), 4.77-4.72 (m, 2H), 4.65-4.60 (m, 2H), 4.41-4.40 (m, 1H), 4.31-4.27 (m, 1H), 4.13-3.97 (m, 5H), 2.06-2.04 (m, 6H), 2.01 (s, 3H), 1.86 (s, 3H), 1.46 (s, 3H), 1.43 (s, 3H), 1.38 (s, 3H), 1.29 (s, 3H); ¹³C NMR (125.76 MHz, CDCl₃): δ 170.4, 169.8, 169.3, 168.8, 145.2, 121.1, 112.6, 109.1, 105.9, 85.7, 84.9, 80.3, 79.4, 75.0, 73.1, 72.6, 70.3, 67.6, 66.6, 61.5, 60.5, 26.8, 25.8, 25.1, 24.4, 20.6, 20.47, 20.44, and 20.1 ppm.

Supplementary Information page 13 of 38

S3:¹H, ¹³C and time dependent ³¹P NMR spectra of complex 1 and 4

S4: ¹H and ¹³C spectra of triazolyl glycoconjugates (**8a-i**)

Spectrum 1a: ¹H NMR (500 MHz, CDCl₃) of complex 1

8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 **Complex 1** 7.0 6.0 (thousandths) 0 1.0 2.0 3.0 4.0 5.0 ¹. 240.0 230.0 220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 X : parts per Million : Carbon 13 155.756 133.646 129.456 128.351 119.890 77.253 77.000 76.747 74.393 .012

Spectrum 1b: ¹³C NMR (500 MHz, CDCl₃) of complex 1

Spectrum 1c: Time dependent ³¹P NMR (500 MHz, CDCl₃) spectra of complex 1

Spectrum 2a: ¹H NMR (500 MHz, CDCl₃) of complex 4

Spectrum 2b: ¹³C NMR (500 MHz, CDCl₃) of complex 4

Spectrum 2c : Time dependent ³¹P NMR (500 MHz, CDCl₃) spectra of complex 4

Spectrum 1: ¹H NMR (500 MHz, CDCl₃) of compound 8a

Spectrum 2: ¹³C NMR (125 MHz, CDCl₃) of compound 8a

Spectrum 3: ¹H NMR (500 MHz, CDCl₃) of compound 8b

Spectrum 4: ¹³C NMR (125 MHz, CDCl₃) of compound 8b

Spectrum 5: ¹H NMR (500 MHz, CDCl₃) of compound 8c

Spectrum 6: ¹³C NMR (125 MHz, CDCl₃) of compound 8c

Spectrum 7: ¹H NMR (500 MHz, CDCl₃) of compound 8d

Spectrum 8: ¹³C NMR (125 MHz, CDCl₃) of compound 8d

Spectrum 9: ¹H NMR (500 MHz, CDCl₃) of compound 8e

Spectrum 10: ¹³C NMR (125 MHz, CDCl₃) of compound 8e

Spectrum 11: ¹H NMR (500 MHz, CDCl₃) of compound 8f

Spectrum 12: ¹³C NMR (125 MHz, CDCl₃) of compound 8f

Spectrum 13: ¹H NMR (500MHz, CDCl₃) of compound 8g

Spectrum 14: ¹³C NMR (125 MHz, CDCl₃) of compound 8g

Spectrum 15: ¹H NMR (500 MHz, CDCl₃) of compound 8h

Spectrum 16: ¹³C NMR (125 MHz, CDCl₃) of compound 8h

Spectrum 17: ¹H NMR (500 MHz, CDCl₃) of compound 8i

Spectrum 18: ¹³C NMR (125 MHz, CDCl₃) of compound 8i

S5: References

1. K. Kumari, A. S. Singh, K. K. Manar, C. L. Yadav, V. K. Tiwari, M. G. B. Drew and N. Singh, New J. Chem., 2019, 43, 1166.

2. I. S. Okafor and G. Wang Carbohydr. Res., .DOI: 10.1016/j.carres.2017.09.008.