Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

SUPPLEMENTARY MATERIAL

Actinobacteria associated with stingless bee biosynthesize bioactive polyketides against bacterial pathogen

Diego Rodríguez-Hernández^a, Weilan G. P. Melo^a, Carla Menegatti^a, Vitor B. Lourenzon^a, Fábio S. do Nascimento^b, Mônica T. Pupo*^a.

^aDepartamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP, Brazil

^bDepartamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil.

*Corresponding author. E-mail address: mtpupo@fcfrp.usp.br (Mônica T. Pupo)

Table of contents	Page			
Table S1. 16S rRNA identification of actinobacteria isolated from Mellipona scutellaris colony. 2				
Fig. S1. Macroscopic characteristics of actinobacterial strains isolated from <i>M. scutellaris</i> , cultured in ISP-2 agar during 10 days at 30 °C (<i>Streptomyces</i> sp. ICBG1307, <i>Streptomyces</i> sp. ICBG1318, <i>Streptomyces</i> sp. ICBG1319, <i>Streptomyces</i> sp. ICBG1323, <i>Streptomyces</i> sp. ICBG1324, and <i>Micromonospora</i> sp. ICBG1321).	2			
Table S2. Visual depiction of antagonist assay between isolated actinobacteria against <i>P. larvae</i> ATCC 9545, <i>M. anisopliae</i> and <i>B. bassiana</i> .	3			
Table S3. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound 8 (CD ₃ OD).	4			
Table S4. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound 13 and their isomer reported by Kunnari et al. (1999) (CDCl ₃).	5			
Fig. S2. NOESY correlations. A) compounds 7; B) compound 8.	6			
Fig. S3. gHMBC correlations of compounds 7, 9 and 13.	6			
Fig. S4 . Dose-response curve using the isolated compounds (1-15) against <i>P. larvae</i> ATCC 9545. A) Lobophorins (1-4); B) Quinocyclines (5-8 and 14-15) and C) Anthracyclines (9-13). The dose-response curves log (Concentration of compounds 1-15) versus OD ₆₀₀ values of <i>P. larvae</i> ATCC 9545 were obtained using GraphPad Prism 5.0 software, through of nonlinear regression analysis and were performed in triplicate.				
Fig. S5. ¹ H NMR spectrum of 13 (500 MHz, CDCl ₃).	8			
Fig. S6. g HSQC spectrum of 13 in CDCl ₃ .	8			
Fig. S7. gCOSY spectrum of 13 in CDCl ₃ .				
Fig. S8. g HMBC spectrum of 13 in CDCl ₃ .				
Fig. S9. The HRESIMS spectrum of 13, (mode negative).				
Notes and references				

Table S1. 16S rRNA identification of actinobacteria isolated from Mellipona scutellaris colony.

Isolatos	Icolation course	NCBI accession	Closest relative	
Isolates	Isolation source	number	(accession number)	
ICBC1207 Strantomucas ch	Mellipona scutellaris	MK609216	Streptomyces kun	Streptomyces kunmingensis
icbaisor - streptomyces sp.	nurse bee	IVINOU6510	(AB184597)	
ICBC1212 Strantomucas ch	M. scutellaris	M//C00217	Streptomyces drozdowiczii	
icbaisis - streptomyces sp.	nurse bee	WIK0U0517	(AB249957)	
ICBG1318 - Streptomyces sp.	M. scutellaris	MK608318	Streptomyces albiaxialis	
	nurse bee		(AY999901)	
ICBG1319 - Streptomyces sp.	M. scutellaris	N4KC00210	Streptomyces xylanilyticus	
	nurse bee	WIK000519	(LC128341)	
	M. scutellaris	M//C00220	Micromonospora tulbaghiae	
icBG1521 - Micromonospora sp.	nurse bee	WIK006520	(Jgi.1058868)	
ICBG1323 - Streptomyces sp.	M. scutellaris	N4/C00221	Streptomyces olivaceus	
	foraging bee	WIK008321	(JOFH01000101)	
ICDC1224 Streptomycoc cp	M. scutellaris	MIKCORDOD	Streptomyces rhizosphaerihabitans	
icoutsza - streptomyces sp.	foraging bee	IVINDU8322	(HQ267983)	

ICBG1307

Fig. S1 Macroscopic characteristics of actinobacterial strains isolated from M. scutellaris, cultured in ISP-2 agar during 10 days at 30 °C (Streptomyces sp. ICBG1307, Streptomyces sp. ICBG1313, Streptomyces sp. ICBG1318, Streptomyces sp. ICBG1319, Streptomyces sp. ICBG1323, Streptomyces sp. ICBG1324, and Micromonospora sp. ICBG1321).

Table S2. Visual depiction of antagonist assay between isolated actinobacteria against *P.larvae* ATCC 9545, *M. anisopliae* and *B. bassiana*.

Strains	P. larvae	M. anisopliae	B. bassiana		_
Streptomyces sp. ICBG1307	0	0	0	Inhibition	High
Streptomyces sp. ICBG1313	0	0	0	3	♠
Streptomyces sp. ICBG1319	0	0	0	2	
Streptomyces sp. ICBG1324	0	0	0	1	
Streptomyces sp. ICBG1318	3	0	0	0	Low
Streptomyces sp. ICBG1323	3	0	0		
Micromonospora sp. ICBG1321	3	0	0		

$\begin{array}{c} 4 \\ 0 \\ 4 \\ 5 \\ 12 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $				
	Compound 8			
#	¹³ C NMR	¹ H NMR (m, <i>J</i> = Hz)		
1	163.8 (C)	-		
2	125.8 (CH)	7.34 (d, 8.1)		
3	137.9 (CH)	7.76 (dd, 7.5; 8.1)		
4	120.12 (CH)	7.82 (d, 7.4)		
4a	134.67 <mark>(C)</mark>	-		
5	188.8 <mark>(C)</mark>	-		
5a	115.1 <mark>(C)</mark>	-		
6	159.8 <mark>(C)</mark>	-		
6a	134.14 <mark>(C)</mark>	-		
7	44.18 <mark>(CH)</mark>	4.25 (d, 4.0)		
8A	36.01 (CH ₂)	2.76 (d, 12.7)		
8B		2.47 (dd, 12.7; 4.0)		
9	85.1 <mark>(C)</mark>	-		
10	58.14 <mark>(CH)</mark>	4.07 (s)		
10a	142.9 <mark>(C)</mark>	-		
11	120.03 (CH)	7.66 (s)		
11a	134.67 <mark>(C)</mark>			
12	188.27 <mark>(C)</mark>	-		
12a	116.7 <mark>(C)</mark>	-		
13	23.63 (CH ₃)	1.58 (s)		
14	172.1 <mark>(C)</mark>	-		
15	53.05 (CH ₃)	3.82 (s)		
2'	116.8 <mark>(C)</mark>	-		
3'	134.8	5.72 (t, 2.1)		
3a'	141.4 (C)	-		
4'	21.67 (CH ₂)	2.85 (m)		
5'	54.16 (CH ₂)	4.17 (m)		
5a'	168.8 <mark>(C)</mark>	-		

Table S3. ¹H (500 MHz) and ¹³C (125 MHz) NMR data for compound 8 (CD₃OD).

Table S4. ¹H (500 MHz) and ¹³C (125 MHz) NMR data for compound **13** and their isomer reported by KUNNARI et al. (1999) (CDCl₃).

4 4a 5a 6a 7 8 1 11a 10a 9 0 0 0 0 1 3		$\begin{array}{c ccccc} OH & O & OH & O \\ & 4 & 4a & 5a & 6a & 7 & 8 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ $			
	Compound 13		Kunnari et al., 1999		
#	¹³ C NMR	¹ H NMR (m, <i>J</i> = Hz)	¹³ C NMR	¹ H NMR (m, <i>J</i> = Hz)	
1	162.8 <mark>(C)</mark>	-	119.8 <mark>(CH)</mark>	7.85 (dd, 7.4; 1.2)	
1-OH	-	11.93 (s)	-	-	
2	124.7 <mark>(CH)</mark>	7.34 (d, 8.4)	132.7 (CH)	7.73 (dd, 8.5; 7.4)	
3	137.4 <mark>(CH)</mark>	7.73 (dd, 8.4; 7.5)	124.6 (CH)	7.34 (dd, 8.5; 1.2)	
4	120.2 <mark>(CH)</mark>	7.85 (d, 7.5)	162.1 <mark>(C)</mark>	-	
4-OH	-	-	-	11.94 (s)	
4a	133.3 <mark>(C)</mark>	-	114.8 <mark>(C)</mark>	-	
5	180.9 <mark>(C)</mark>	-	180.4 (C)	-	
5a	115.6 <mark>(C)</mark>	-	115.1 <mark>(C)</mark>	-	
6	160.1 <mark>(C)</mark>	-	159.5 <mark>(C)</mark>	-	
6-OH	-	12.53 (s)	-	12.54 (s)	
6a	135.9 <mark>(C)</mark>	-	135.5 (C)	-	
7	202.8 <mark>(C)</mark>	-	202.2 (C)	-	
8	31.5 (CH ₃)	2.68 (s)	31.2 (CH ₃)	2.96 (s)	
9	38.4 5 <mark>(CH₂)</mark>	3.87 (s)	38.3 (CH ₂)	3.88 (s)	
9a	142.5 <mark>(C)</mark>	-	141.1 (C)		
10	122.3 <mark>(CH)</mark>	7.70 (s)	121.9 (CH)	7.71 (s)	
10a	Not observed	-	132.7 (C)	-	
11	181.2 <mark>(C)</mark>	-	192.1 (C)	-	
11a	116.0 <mark>(C)</mark>	-	133.0 (C)	-	
12	170.9 <mark>(C)</mark>	-	169.7 (C)	-	
13	52.7 (CH ₃)	3.71 (s)	51.9 CH ₃)	3.72 (s)	

Fig. S2. NOESY correlations. A) compounds 7; B) compound 8.

Fig. S3. gHMBC correlations of compounds 7, 9 and 13.

Figure S4. Dose-response curve using the isolated compounds (**1-15**) against *P. larvae* ATCC 9545. A) Lobophorins (**1-4**); B) Quinocyclines (**5-8** and **14-15**) and C) Anthracyclines (**9-13**). The dose-response curves log (Concentration of compounds **1-15**) versus OD₆₀₀ values of *P. larvae* ATCC 9545 were obtained using GraphPad Prism 5.0 software, through of nonlinear regression analysis and were performed in triplicate.

Fig. S5. ¹H NMR spectrum of **13** (500 MHz, CDCl₃).

Fig. S6. *g*HSQC spectrum of **13** in CDCl₃.

Fig. S7. gCOSY spectrum of **13** in CDCl₃.

Fig. S8. gHMBC spectrum of 13 in CDCl₃.

Fig. S9. The HRESIMS [M-H]⁻ spectrum of **13**, m/z (experimental mass) = 353.0684 ([M-H]⁻), m/z (calculated mass [calcd.]) = 353.0667 ([M-H]⁻) consistent with the molecular formula $C_{19}H_{14}O_7$).

Notes and references

T. Kunnari, J. Kantola, K. Ylihonko, K. D. Klika, P. Mäntsälä, J. Hakala, J. Chem. Soc. Perkin. Trans., 1999, 2, 1649-1652.