Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

The asymmetric vinylogous Mannich reaction of noncyclic

dicyanoolefins catalyzed by a bifunctional thiourea-

ammonium salt phase transfer catalyst

Yanhong Fang, Zhonglin Wei, Ying Wang^b, Shuo Liu, Jungang Cao, Dapeng Liang, Yingjie Lin, and Haifeng Duan

^aDepartment of Organic Chemistry, College of Chemistry, Jilin University,

2699 Qianjin Street, Changchun 130012, China.

^bDepartment of Ophthalmology, the second Hospital of Jilin University, Changchun, 130041, China

E-mail: linyj@jlu.edu.cn; duanhf@jlu.edu.cn; Tel: 0431-85168398;

Table of Contents

1. General Information	1
2. Starting materials	1
3. General procedure for preparation of catalyst 1g-1i.	2
3.1 Preparation of catalyst 1g-1i.	2
3.2 Characterization of catalysts 1g.	3
4. General procedure for vinylogous Mannich reaction of dicyanoalkylidenes w	vith α-amido
4. General procedure for vinylogous Mannich reaction of dicyanoalkylidenes w sulfones and characterization of products 4a-4t, derivative 5a	vith α-amido 5
 4. General procedure for vinylogous Mannich reaction of dicyanoalkylidenes w sulfones and characterization of products 4a-4t, derivative 5a 5. NMR spectra of addition products 4a-4t and derivative 5a 	/ ith α-amido 5 16
 4. General procedure for vinylogous Mannich reaction of dicyanoalkylidenes we sulfones and characterization of products 4a-4t, derivative 5a 5. NMR spectra of addition products 4a-4t and derivative 5a 6. HPLC traces of all compounds 4a-4t and derivative 5a 	/ith α-amido 5 16 37

1. General Information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without purification. All solvents were obtained from commercial sources and were purified according to standard procedures. For thin-layer chromatography (TLC), silica gel plates (HSGF 254) were used and compounds were visualized by irradiation with UV light. Purification of reaction products was carried out by flash column chromatography using silica gel (200-300 mesh). ¹H and ¹³C NMR spectra were recorded on a Varian Mercury-300BB (300 MHz), a Bruker NMR Spectrometer (400 MHz) or a Bruker NMR Spectrometer (500 MHz). All chemical shifts (δ) were given in ppm. Chemical shifts (δ ppm) are relative to the resonance of the deuterated solvent as the internal standard (CDCl₃, δ 7.26 ppm for proton NMR, δ 77.16 ppm for carbon NMR; CD₃OD-d₄, δ 3.31 ppm for proton NMR, δ 49.00 ppm for carbon NMR). Data are presented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and coupling constant in Hertz (Hz). Mass spectra were recorded on the Bruker Agilent 1290 MicrOTOF Q II. Melting points were measured on a melting point apparatus and were uncorrected. The ee values determination was carried out using chiral HPLC (Waters) with Chiracel AD-H column, Chiracel OD-H column and Chiracel AS-H column. Optical rotations were measured on a Shanghai ShenGuang SGW-2 Polarimeter at $\lambda = 589$ nm. Optical rotations are reported as follows: $[\alpha]_{p}^{25}$ (c=g/100 mL, solvent).

2. Starting materials

Urea **1o** and compound **1i'** were prepared according to reported procedure.^{1, 2} All α, α -dicyanoolefins were prepared according to literature procedure.³ Differently substituted dicyanoolefins were also in accordance with similar synthetic method. All amidosulfones were prepared using reported procedures from corresponding aldehydes.⁴⁻⁶ All phase-transfer catalysts **1a**⁷, **1b-1e**^{8, 9} were synthesized according to procedures reported previously. *m*-xylene was dried over 4Å M.S.

3. General procedure for preparation of catalyst 1g-1i.

3.1 Preparation of catalyst 1g-1i.

Under argon protection, $1i'^2$ (500 mg, 1.18 mmol, 1 eq.) was dissolved in 8 mL anhydrous THF, benzyl bromide (1.3 mmol, 1.1 eq.) was added, the mixture was heated to reflux, after 12 h, the mixture was concentrated under reduced pressure and purified by flash chromatography (Et₂O/MeOH = 10:1 to 8:1) to afford the desired product **1i''**.

Under argon protection, TFA (2.4 mL) was added to a solution of **1***i*" (0.24 mmol) in 2.4 mL anhydrous CH_2Cl_2 while stirring, the mixture was stirred overnight and concentrated to dryness under reduced pressure. The residue was redissolved in 10 mL CH_2Cl_2 , the mixture was adjusted to pH 7-8 by aqueous ammonia and extracted by CH_2Cl_2 (2×5 mL). The organic phases were combined, dried over anhydrous Na_2SO_4 , evaporated under reduced pressure. The crude free amine was dried under vacuum and dissolved in 2.4 mL anhydrous CH_2Cl_2 , Aryl isothiocyanate (0.26 mmol, 1.1 eq.) was added and the resulting mixture was stirred at rt overnight. After evaporation of the volatiles, the crude reactionmixture was purified by flash column chromatography (DCM/MeOH = 50:1 to 30:1) to give catalyst **1g-1i**.

3.2 Characterization of catalysts 1g.

Light yellow solid, 130 mg, 62 % yield for two steps. **m.p.**= 144-145°C, $[a]_{D}^{25}$ = -48.5 (c = 0.5, CHCl₃).

¹H NMR (300 MHz, cd₃od) δ 8.79 (d, J = 4.7 Hz, 1H),
8.14 (d, J = 2.5 Hz, 1H), 8.00 (d, J = 9.2 Hz, 1H), 7.94 (s,
2H), 7.71 (d, J = 4.8 Hz, 1H), 7.62 (d, J = 5.9 Hz, 2H),
7.49 (dd, J = 9.3, 2.5 Hz, 1H), 7.41 (d, J = 1.5 Hz, 2H),

7.27 (d, J = 10.6 Hz, 1H), 5.97 – 5.80 (m, 1H), 5.36 – 5.14 (m, 3H), 5.09 – 4.86 (m, 2H), 4.55 (d, J = 12.9 Hz, 1H), 4.05 (s, 3H), 3.90 – 3.80 (m, 1H), 3.57 – 3.46 (m, 1H), 3.40 – 3.29 (m, 1H), 2.73 (q, J = 16.2, 7.8 Hz, 1H), 2.26 – 2.02 (m, 3H), 1.89 (s, 1H), 1.33 (s, 18H), 1.26 – 1.11 (m, 2H).

¹³C NMR (101 MHz, MeOD) δ 180.61, 159.19, 152.12, 147.26, 144.46, 143.62, 140.93, 136.14, 131.56, 131.27, 130.50, 127.67, 127.23, 126.41, 124.48, 123.33, 123.17, 119.51, 117.60, 116.80, 102.38, 69.20, 66.32, 60.20, 55.50, 54.13, 49.81, 49.49, 36.97, 34.46, 30.30, 27.48, 26.56, 24.02.

HRMS (ESI): calculated for C₄₄H₅₁F₆N₄OS [M-Br]+: 797.3682, found 797.3690.

4. General procedure for vinylogous Mannich reaction of dicyanoalkylidenes with α -amido sulfones and characterization of products 4a-4t, derivative 5a

Dicyanoalkylidenes **2** (0.1 mmol), α -amido sulfones **3** (0.11 mmol) and catalyst **1g** (8.8 mg, 0.01 mmol, 10 mol%) were dissolved in dry *m*-xylene (1 mL), the mixture was cooled to -30°C, freshly grounded K₃PO₄ (106 mg, 0.5 mmol, 5 eq.) was added in one portion, the resulting suspension was vigorously stirred for 48h, 1 mL sat. aq. NH₄Cl was added and the solution was allowed to warm to room temperature, the aqueous was extracted with EA (3×5 mL), then the organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (PE/EA = 5:1).

tert-butyl (R)-(4,4-dicyano-1,3-diphenylbut-3-en-1-yl)carbamate (4a)

¹H NMR (300 MHz, cdcl₃) δ 7.66 – 7.31 (m, 5H), 7.30 – 7.17 (m, 3H), 7.16 – 6.92 (m, 2H), 4.77 (d, J = 4.9 Hz, 1H), 4.53 (q, J = 7.5, 5.1 Hz, 1H), 3.76 – 3.53 (m, 1H), 3.30 (dd, J = 13.5, 6.5 Hz, 1H), 1.36 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 176.13, 154.80, 139.05, 134.13, 132.29, 129.21, 129.17, 128.65, 128.00, 126.46, 112.51, 86.31, 80.26, 54.10, 44.29, 28.32.

HRMS (ESI): calculated for (C₂₃H₂₃N₃NaO₂)⁺: 396.1682, found 396.1681.

tert-butyl (R)-(4,4-dicyano-1-(2-methoxyphenyl)-3-phenylbut-3-en-1-yl)carbamate (4b)

Colorless solid, 39.9 mg, 99% yield, m.p.= 40-41 °C, $[a]_D^{25}$ = +55.3 (c = 0.38, CHCl₃). The ee value was 88% (Chiralpak AS, 5

hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 8.249 min., tminor= 10.802 min). ¹H NMR (300 MHz, cdcl₃) δ 7.73 – 7.37 (m, 5H), 7.35 – 7.26 (m, 1H), 7.06 – 6.80 (m, 2H), 6.799 – 6.713 (m, 1H), 5.70 (d, J = 9.7 Hz, 1H), 4.72 (q, J = 16.6, 8.0 Hz, 1H), 3.91 (s, 3H), 3.75 – 3.58 (m, 1H), 3.51 (dd, J = 13.1, 7.3 Hz, 1H), 1.44 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 176.37, 157.08, 154.97, 144.31, 134.28, 132.22, 129.76, 129.08, 128.17, 126.46, 120.69, 112.88, 111.10, 85.90, 79.85, 55.33, 53.05, 42.81, 28.40.

HRMS (ESI): calculated for (C₂₄H₂₅N₃NaO₃)⁺: 426.1788, found 426.1789.

tert-butyl (R)-(4,4-dicyano-1-(2-fluorophenyl)-3-phenylbut-3-en-1-yl)carbamate (4c)

Colorless oil, 37.6 mg, 96% yield, $[a]_D^{25}$ = +13.9 (c = 0.49, CHCl₃). The ee value was 95% (Chiralpak AD-H, hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 7.360 min., tminor= 6.236 min).

¹H NMR (300 MHz, cdcl₃) δ 7.65 – 7.41 (m, 5H), 7.36 – 7.27 (m, 1H), 7.17 – 6.98 (m, 3H), 5.14 (d, J = 9.0 Hz, 1H), 4.86 (q, J = 15.2, 8.1 Hz, 1H), 3.71 – 3.54 (m, 1H), 3.42 (dd, J = 13.6, 6.5 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 175.51, 161.78, 154.69, 134.04, 132.39, 130.27 (d, J = 8.5 Hz), 129.24, 128.55, 128.01, 124.70 (d, J = 3.4 Hz), 116.32 (d, J = 21.2 Hz), 112.53, 104.21, 80.40, 77.24, 50.35, 43.51, 28.29.

HRMS (ESI): calculated for (C₂₃H₂₂FN₃NaO₂)⁺: 414.1588, found 414.1583.

tert-butyl (R)-(4,4-dicyano-1-(3-methoxyphenyl)-3-phenylbut-3-en-1-yl)carbamate(4d)

87% (Chiralpak AD-H, hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 7.689 min., tminor= 6.252 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 – 7.38 (m, 5H), 7.357 – 7.212 (m, 1H), 6.946 – 6.883 (m, 1H), 6.72 (d, J = 7.0 Hz, 1H), 6.67 (s, 1H), 4.90 (d, J = 6.3 Hz, 1H), 4.59 (d, J = 5.7 Hz, 1H), 3.81 (s, 3H), 3.78 – 3.59 (m, 1H), 3.41 (dd, J = 13.3, 7.0 Hz, 1H), 1.47 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 176.05, 160.04, 154.83, 140.51, 134.10, 132.31, 130.28, 129.21, 128.04, 118.56, 114.21, 112.55, 112.06, 86.32, 80.27, 55.31, 54.10, 44.18, 28.32.

HRMS (ESI): calculated for (C₂₄H₂₅N₃NaO₃)⁺: 426.1788, found 426.1786.

tert-butyl (R)-(1-(3-chlorophenyl)-4,4-dicyano-3-phenylbut-3-en-1-yl)carbamate(4e)

¹**H NMR** (300 MHz, cdcl₃) δ 7.65 – 7.50 (m, 2H), 7.480 – 7.428 (m, 2H), 7.338 –7.272 (m, 3H), 7.115 – 6.982 (m, 2H), 4.82 (d, *J* = 6.2 Hz, 1H), 4.61 (q, *J* = 11.8, 4.3 Hz, 1H), 3.92 – 3.44 (m, 1H), 3.35 (dd, *J* = 13.5, 6.6 Hz, 1H), 1.44 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 178.48, 154.68, 141.35, 134.95, 134.00, 132.44, 130.48, 129.32, 128.74, 127.94, 126.78, 124.46, 112.37, 86.87, 80.54, 53.52, 44.19, 28.28.

HRMS (ESI): calculated for (C₂₃H₂₂ClN₃NaO₂)⁺: 430.1293, found 430.1293.

tert-butyl (R)-(4,4-dicyano-3-phenyl-1-(p-tolyl)but-3-en-1-yl)carbamate (4f)

(Chiralpak AD-H, hexane/i-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 6.542 min., tminor= 5.675 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.52 (m, 3H), 7.503 – 7.452 (m, 2H), 7.17 (d, J = 7.9 Hz, 2H), 7.02 (d, J = 7.9 Hz, 2H), 4.84 (d, J = 6.5 Hz, 1H), 4.57 (q, J = 14.4, 7.1 Hz, 1H), 3.80 – 3.67 (m, 1H), 3.40 (dd, J = 13.6, 7.3 Hz, 1H), 2.38 (s, 3H), 1.46 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 175.89, 154.79, 138.52, 136.01, 134.70, 134.11, 132.24, 129.80, 129.18, 128.01, 126.38, 86.21, 80.15, 53.83, 44.24, 28.32, 21.14.

HRMS (ESI): calculated for (C₂₄H₂₅N₃NaO₂)⁺: 410.1839, found 410.1838.

tert-butyl (R)-(4,4-dicyano-1-(4-methoxyphenyl)-3-phenylbut-3-en-1-yl)carbamate(4g)

Colorless solid, 39.1 mg, 97% yield, m.p.= 43-44 °C, $[a]_{D}^{25} = +30.6$ (c =0.51, CHCl₃). The ee value was 88% (Chiralpak AD-H, hexane/i-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 7.155 min., tminor = 6.577 min).

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.45 (m, 4H), 7.32 – 7.24 (m, 1H), 6.93 – 6.84 (m, 1H), 6.72 (d, J = 7.6 Hz, 1H), 6.68 – 6.63 (m, 1H), 4.90 (d, J = 7.4 Hz, 1H), 4.59 (g, 1H), 3.81 (s, 3H), 3.78 – 3.60 (m, 1H), 3.41 (dd, J = 13.6, 7.2 Hz, 1H), 1.46 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 176.16, 160.04, 140.52, 134.10, 132.31, 130.28, 129.21, 128.04, 118.56, 114.21, 112.05, 86.34, 80.24, 55.31, 54.13, 44.18, 28.32.

HRMS (ESI): calculated for (C₂₄H₂₅N₃NaO₃)⁺: 426.1788, found 426.1788.

tert-butyl (R)-(4,4-dicyano-1-(4-fluorophenyl)-3-phenylbut-3-en-1-yl)carbamate(4h)

mL/min, tmajor = 10.542 min., tminor = 7.176 min).

¹H NMR (300 MHz, cdcl₃) δ 7.63 – 7.49 (m, 3H), 7.486 – 7.384 (m, 2H), 7.19 – 7.08 (m, 2H), 7.07 – 6.95 (m, 2H), 4.79 (d, J = 7.5 Hz, 1H), 4.59 (q, J = 13.8, 6.8 Hz, 1H), 3.76 – 3.62 (m, 1H), 3.36 (dd, J = 13.6, 7.2 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 175.76, 163.79, 161.32, 155.49 (d, J = 17.7 Hz), 134.00, 132.40, 129.30, 128.26 (d, J = 8.5 Hz), 127.94, 116.10 (d, J = 21.6 Hz), 112.40, 86.56, 80.43, 53.41, 44.15, 28.29.

HRMS (ESI): calculated for (C₂₃H₂₂FN₃NaO₂)⁺: 414.1588, found 414.1588.

tert-butyl (R)-(1-(4-chlorophenyl)-4,4-dicyano-3-phenylbut-3-en-1-yl)carbamate(4i)

Colorless solid, 40.4 mg, 99% yield, **m.p.** = 45-46 °C, $[a]_D^{25} = +37.1$ (c = 0.48, CHCl₃). The ee value was 97% (Chiralpak AD-H, hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 8.245 min., tminor= 5.700 min).

¹H NMR (300 MHz, cdcl₃) δ 7.65 – 7.50 (m, 3H), 7.50 – 7.40 (m, 2H), 7.38 – 7.28 (m, 2H), 7.13 – 7.01 (m, 2H), 4.80 (d, J = 7.1 Hz, 1H), 4.60 (q, 1H), 3.77 – 3.59 (m, 1H), 3.36 (dd, J = 13.7, 7.0 Hz, 1H), 1.44 (s, 9H).

¹³C NMR (101 MHz, CDCl3) δ 175.59, 154.68, 137.68, 134.50, 133.96, 132.44, 129.35, 129.33, 127.93, 127.85, 112.36, 86.51, 80.51, 53.42, 44.03, 28.29.
HRMS (ESI): calculated for (C₂₃H₂₂ClN₃NaO₂)⁺: 430.1293, found 430.1293.

tert-butyl (R)-(1-(4-bromophenyl)-4,4-dicyano-3-phenylbut-3-en-1-yl)carbamate (4j)

Colorless solid, 39.8 mg, 88% yield, m.p. = $42-43^{\circ}$ C, [a]_D²⁵ = +36.3 (c = 0.49, CHCl₃). The ee value was 95% (Chiralpak AD-H, hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 9.731 min., tminor= 6.549 min).

¹**H NMR** (300 MHz, cdcl₃) δ 7.72 – 7.50 (m, 3H), 7.50 – 7.35 (m, 4H), 6.99 (d, *J* = 8.3 Hz, 2H), 4.80 (d, *J* = 21.4 Hz, 1H), 4.55 (q, 1H), 3.75 – 3.53 (m, 1H), 3.34 (dd, *J* = 13.6, 7.0 Hz, 1H), 1.42 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 175.61, 154.68, 138.24, 133.97, 132.44, 132.29, 129.33, 128.16, 127.93, 122.57, 112.36, 86.56, 80.50, 53.49, 43.99, 28.29.

HRMS (ESI): calculated for (C₂₃H₂₂BrN₃NaO₂)⁺: 474.0788, found 474.0787.

tert-butyl(R)-(4,4-dicyano-3-phenyl-1-(4-(trifluoromethyl)phenyl)but-3-en-1yl)carbamate(**4k**)

Colorless solid, 43.3 mg, 98% yield, **m.p.** = 58-59°C, $[a]_D^{25} = +22.9$ (c = 0.48, CHCl₃). The ee value was 97% (Chiralpak AD-H, hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 9.000 min., tminor= 6.567 min).

¹**H NMR** (300 MHz, cdcl₃) δ 7.70 – 7.50 (m, 5H), 7.50 – 7.43 (m, 2H), 7.31 – 7.26 (m, 2H), 4.84 (d, J = 6.8 Hz, 1H), 4.72 (q, J = 13.4, 6.4 Hz, 1H), 3.72 – 3.58 (m, 1H), 3.38 (dd, J = 13.7, 6.4 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 182.46, 154.66, 143.41, 136.83, 133.95, 132.50, 129.39, 127.87, 126.84, 126.15 (q, J = 7.2, 3.9 Hz), 112.30, 86.86, 80.84, 53.56, 44.05, 28.26.
HRMS (ESI): calculated for (C₂₄H₂₂F₃N₃NaO₂)⁺: 464.1556, found 464.1557.

tert-butyl (R)-(4,4-dicyano-1-(4-nitrophenyl)-3-phenylbut-3-en-1-yl)carbamate (4)

Colorless solid, 38.5 mg, 92% yield, m.p. = 46-47°C,

(Chiralpak AD-H, hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 18.407 min., tminor= 9.091 min).

¹**H NMR** (300 MHz, cdcl₃) δ 8.24 (d, *J* = 8.3 Hz, 2H), 7.72 – 7.52 (m, 3H), 7.515 – 7.415 (m, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 4.83 (d, *J* = 19.6 Hz, 2H), 3.72 – 3.54 (m, 1H), 3.40 (dd, *J* = 13.4, 6.1 Hz, 1H), 1.44 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 177.82, 154.56, 147.83, 146.53, 133.80, 132.66, 129.51,
 127.82, 127.38, 124.35, 112.09, 82.74, 80.96, 53.44, 43.88, 28.23.

HRMS (ESI): calculated for (C₂₃H₂₃N₃NaO₂)⁺: 396.1682, found 396.1680.

tert-butyl (R)-(4,4-dicyano-1-(4-cyanophenyl)-3-phenylbut-3-en-1-yl)carbamate (4m)

¹H NMR (300 MHz, cdcl₃) δ 7.73 – 7.60 (m, 2H), 7.60 – 7.48 (m, 3H), 7.48 – 7.34 (m, 2H), 7.29 – 7.23 (m, 2H), 4.82 (d, J = 7.4 Hz, 1H), 4.69 (q, J = 15.0, 8.2 Hz, 1H), 3.73 – 3.45 (m, 1H), 3.34 (dd, J = 13.7, 6.2 Hz, 1H), 1.40 (s, 9H).
¹³C NMR (126 MHz, CDCl₃) δ 174.92, 154.70, 133.86, 132.91, 132.60, 129.46, 127.82, 127.20, 118.14, 112.53, 112.13, 81.12, 77.25, 53.60, 43.89, 28.24.

HRMS (ESI): calculated for (C₂₄H₂₂N₄NaO₂)⁺: 421.1635, found 421.1637.

tert-butyl (R)-(4,4-dicyano-3-phenyl-1-(thiophen-2-yl)but-3-en-1-yl)carbamate (4n)

Colorless oil, 37.6 mg, 99% yield, $[a]_D^{25} = +26.4$ (c = 0.56, CHCl₃). The ee value was 82% (Chiralpak AD-H, hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 7.446 min., tminor= 6.588 min).

¹H NMR (300 MHz, cdcl₃) δ 7.74 – 7.35 (m, 5H), 7.24 – 7.22 (m, 1H), 7.10 – 6.90 (m, 1H), 6.896 – 6.652 (m, 1H), 5.04 – 4.61 (m, 2H), 3.80 – 3.63 (m, 1H), 3.45 (dd, J = 13.8, 6.8 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 177.73, 162.29, 142.37, 133.89, 132.29, 129.22, 127.95, 127.17, 125.43, 125.06, 112.31, 80.55, 78.59, 49.35, 44.61, 28.29.

HRMS (ESI): calculated for (C₂₁H₂₁N₃NaO₂S)⁺: 402.1247, found 402.1248.

tert-butyl (S)-(5,5-dicyano-1,4-diphenylpent-4-en-2-yl)carbamate (40)

Colorless solid, 35.3 mg, 91% yield, **m.p.** = 125-126 °C, $[a]_D^{25}$ = +51.2 (c = 0.5, CHCl₃). The ee value was 76% (Chiralpak AD-H, hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 6.309 min., tminor= 5.397 min).

1H NMR (300 MHz, cdcl3) δ 7.47 – 7.35 (m, 5H), 7.35 – 7.29 (m, 3H), 7.29 – 7.25 (m, 2H), 5.06 – 5.00 (m, 1H), 4.85 (d, J = 9.0 Hz, 1H), 3.38 – 3.33 (m, 1H), 3.05 (t, 2H), 2.16 – 2.11 (m, 1H), 1.42 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 183.24, 153.55, 145.69, 136.78, 134.75, 129.17, 128.68, 128.08, 127.44, 122.66, 115.80, 80.75, 71.22, 49.42, 48.02, 32.53, 27.85.

HRMS (ESI): calculated for (C₂₄H₂₅N₃NaO₂)⁺: 410.1839, found 410.1834.

tert-butyl (R)-(4,4-dicyano-3-(2-methoxyphenyl)-1-phenylbut-3-en-1-yl)carbamate (4p)

Colorless solid, 34.7 mg, 86% yield, **m.p.** = $39-40 \,^{\circ}$ C, **[a]**_D²⁵= +22.0 (c = 0.5, CHCl₃). The ee value was 77% (Chiralpak AD-H, hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 9.429 min., tminor= 6.331 min).

¹H NMR (300 MHz, cdcl₃) δ 7.50 – 7.34 (m, 1H), 7.33 – 7.24 (m, 2H), 7.18 – 7.00 (m, 4H), 6.98 – 6.75 (m, 2H), 4.73 (d, 1H), 4.63 (q, 1H), 3.81 (s, 3H), 3.65 – 3.46 (m, 1H), 3.41 (dd, *J* = 14.2, 6.5 Hz, 1H), 1.39 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.56, 155.89, 146.79, 133.01, 130.20, 129.86, 128.94, 128.75, 126.83, 126.35, 121.01, 120.56, 110.78, 82.75, 78.67, 63.78, 55.47, 43.61, 27.88.

HRMS (ESI): calculated for (C₂₄H₂₅N₃NaO₃)⁺: 426.1788, found 426.1788.

tert-butyl (R)-(3-(2-bromophenyl)-4,4-dicyano-1-phenylbut-3-en-1-yl)carbamate (4q)

Colorless oil, 40.3 mg, 89% yield, **[a]**_D²⁵= +20.0 (c = 0.57, CHCl₃). The ee value was 70% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 230 nm, 1 mL/min, tmajor = 18.702 min., tminor= 13.024 min).

¹H NMR (300 MHz, cdcl₃) δ 7.72 – 7.64 (m, 1H), 7.64 – 7.42 (m, 1H), 7.42 – 7.26 (m, 4H), 7.26 – 7.14 (m, 3H), 5.12 – 4.57 (m, 2H), 3.66 – 3.39 (m, 1H), 3.29 (dd, 1H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 176.82, 155.17, 136.01, 133.76, 132.04, 131.81, 129.18, 128.40, 128.14, 127.76, 126.14, 119.64, 111.10, 91.11, 80.57, 52.67, 44.74, 28.30.

HRMS (ESI): calculated for (C₂₃H₂₂BrN₃NaO₂)⁺: 474.0788, found 474.0786.

tert-butyl (R)-(4,4-dicyano-3-(3-methoxyphenyl)-1-phenylbut-3-en-1-yl)carbamate (4r)

¹H NMR (300 MHz, cdcl₃) δ 7.46 – 7.39 (m, 1H), 7.39 – 7.30 (m, 3H), 7.21 – 7.12 (m, 2H), 7.11 – 6.92 (m, 3H), 4.84 (d, J = 8.0 Hz, 1H), 4.64 (q, J = 14.1, 6.3 Hz, 1H), 3.85 (s, 3H), 3.77 – 3.55 (m, 1H), 3.36 (dd, J = 13.5, 6.9 Hz, 1H), 1.44 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 175.91, 159.78, 154.81, 139.16, 135.28, 130.35, 129.14, 128.62, 126.48, 120.07, 118.35, 113.26, 112.49, 83.80, 80.23, 55.49, 54.12, 44.35, 28.30.

HRMS (ESI): calculated for (C₂₄H₂₅N₃NaO₃)⁺: 426.1788, found 426.1788.

tert-butyl (R)-(3-(3-chlorophenyl)-4,4-dicyano-1-phenylbut-3-en-1-yl)carbamate (4s)

¹H NMR (300 MHz, cdcl₃) δ 7.56 – 7.46 (m, 2H), 7.43 – 7.32 (m, 5H), 7.22 – 7.08 (m, 2H), 4.85 (d, J = 7.8 Hz, 1H), 4.64 (q, J = 14.2, 6.9 Hz, 1H), 3.82 – 3.57 (m, 1H), 3.34 (dd, J = 13.5, 6.5 Hz, 1H), 1.45 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 174.48, 154.86, 138.99, 135.95, 135.69, 135.29, 132.08, 130.55, 129.76, 129.26, 128.77, 126.40, 112.62, 87.91, 80.16, 53.92, 44.57, 28.30.

HRMS (ESI): calculated for (C₂₃H₂₂ClN₃NaO₂)⁺: 430.1293, found 430.1291.

tert-butyl (R)-(4,4-dicyano-3-(4-methoxyphenyl)-1-phenylbut-3-en-1-yl)carbamate (4t)

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.3 Hz, 2H), 7.43 – 7.30 (m, 3H), 7.19 – 7.09 (m, 2H), 7.04 (d, *J* = 8.8 Hz, 2H), 4.89 (d, *J* = 6.1 Hz, 1H), 4.63 (q, *J* = 14.5, 7.2 Hz, 1H), 3.91 (s, 3H), 3.79 – 3.63 (m, 1H), 3.39 (dd, *J* = 13.7, 7.3 Hz, 1H), 1.47 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 175.18, 163.09, 154.97, 139.02, 130.33, 129.14, 128.62, 126.48, 126.04, 114.66, 113.30, 83.80, 80.20, 55.57, 54.52, 43.83, 28.32.

HRMS (ESI): calculated for (C₂₄H₂₅N₃NaO₃)⁺: 426.1788, found 426.1786.

tert-butyl (R)-(4,4-dicyano-3-(4-fluorophenyl)-1-phenylbut-3-en-1-yl)carbamate (4u)

Colorless solid, 33.3 mg, 85% yield, **m.p.** = 35-36°C, **[a]**_D²⁵= +89.2 (c = 0.37, CHCl₃). The ee value was 91% (Chiralpak AS, hexane/*i*-PrOH = 90:10, 254 nm, 1 mL/min, tmajor = 8.751 min., tminor= 6.548 min).

¹H NMR (300 MHz, cdcl₃) δ 7.56 – 7.43 (m, 2H), 7.41 – 7.27 (m, 3H), 7.24 – 7.16 (m, 2H), 7.15 – 7.06 (m, 2H), 4.84 (d, J = 7.8 Hz, 1H), 4.56 (q, J = 15.2, 8.0 Hz, 1H), 3.78 – 3.60 (m, 1H), 3.36 (dd, J = 13.6, 7.0 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 174.71, 163.81 (d, J = 32.9 Hz), 155.06, 138.80, 130.57 (d, J = 9.2 Hz), 130.12, 129.26, 128.78, 126.46, 116.60 (d, J = 22.2 Hz), 112.43, 86.18, 80.38, 54.20, 44.33, 28.30.

HRMS (ESI): calculated for (C₂₃H₂₂FN₃NaO₂)⁺: 414.1588, found 414.1588.

tert-butyl ((1R,2R)-3-(dicyanomethylene)-2-methyl-1-phenylpentyl)carbamate (4v)

Colorless oil, 26.1 mg, 77% yield, $[a]_D^{25}$ = +80.8 (c = 0.5, CHCl₃). NC CN The ee value was 83% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 230 nm, 1 mL/min, major-t_{major}= 11.793 min, t_{minor}= 11.128 min, minort_{major} = 6.704 min. t_{minor}= 9.385min). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.38 (m, 3H), 7.33 – 7.26 (m, 2H), 4.98 (d, *J* = 8.2 Hz, 1H), 4.89 (t, *J* = 8.9 Hz, 1H), 3.78 – 3.26 (m, 1H), 2.71 – 2.26 (m, 2H), 1.50 (s, 9H), 1.43 (d, *J* = 6.8 Hz, 3H), 1.24 (t, *J* = 7.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 188.21, 155.24, 139.19, 129.26, 128.64, 126.43, 111.79, 111.45, 87.25, 80.40, 57.79, 48.46, 29.70, 28.30, 14.12, 13.70.

HRMS (ESI): calculated for (C₂₀H₂₆N₃O₂)⁺: 340.2020, found 340.2027.

tert-butyl ((R)-((R)-2-(dicyanomethylene)cyclohexyl)(phenyl)methyl)carbamate (4w)

white solid, 25 mg, 71% yield, **m.p.** = 178-179 °C, $[a]_D^{25}$ = +79.6 (c = 0.3, CHCl₃). The ee value was 93% (Chiralpak AD-H, hexane/*i*-PrOH = 95:5, 230 nm, 1 mL/min, major-t_{major} = 17.708 min, t_{minor} = 16.507 min, minor-t_{major} = 11.235 min. t_{minor} = 13.904min).

1H NMR (300 MHz, cdcl3) δ 7.41 – 7.39 (m, 3H), 7.34 – 7.29 (m, 2H), 5.20 (t, 1H), 4.86 (d, 1H), 3.59 – 3.54 (m, 1H), 3.53 – 3.06 (m, 2H), 2.43 (d, J = 12.8 Hz, 1H), 1.66 – 1.63 (m, 1H), 1.41 – 1.35 (m, 4H), 1.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 183.62, 154.80, 139.40, 128.84, 127.31, 126.41, 112.62, 111.26, 89.25, 80.05, 55.54, 48.41, 31.58, 28.33, 28.20, 22.65, 16.55.

HRMS (ESI): calculated for (C₂₁H₂₅N₃NaO₂)⁺: 374.1839, found 374.1837.

tert-butyl (R)-(3-oxo-1,3-diphenylpropyl)carbamate (5a)

Colorless solid, 24.7 mg, 76% yield, **m.p.** = 39-40 °C, $[a]_D^{25}$ = +21.9 (c = 0.53, CHCl₃). The ee value was 91% (Chiralpak AD-H, hexane/*i*-PrOH = 80:20, 230 nm, 1 mL/min, tmajor = 11.479 min., tminor= 10.026 min).

¹**H NMR** (300 MHz, cdcl₃) δ 7.98 – 7.79 (m, 2H), 7.60 – 7.51 (m, 1H), 7.49 – 7.38 (m, 2H), 7.38 – 7.18 (m, 5H), 5.55 (d, *J* = 5.0 Hz, 1H), 5.25 (q, *J* = 12.3, 5.8 Hz, 1H), 3.81 – 3.55 (m, 1H), 3.44 (dd, *J* = 16.7, 6.1 Hz, 1H), 1.41 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 184.50, 155.17, 146.54, 136.75, 133.33, 128.64, 128.59, 128.11, 127.31, 126.33, 79.73, 77.22, 44.30, 28.36.

HRMS (ESI): calculated for (C₂₀H₂₃NNaO₃)⁺: 348.1570, found 348.1568.

6. HPLC traces of all compounds 4a-4t and derivative 5a

8 1	Description	(min)	(礦*sec)	// Alea	(礦)
1	W2489 ChA 230nm	6.697	4508939	50.50	337567
2	W2489 ChA 230nm	8.376	4419809	49.50	239033

	Description	(min)	(礦*sec)	70 / 11 Cu	(礦)
1	W2489 ChA 230nm	5.197	3806297	49.38	359396
2	W2489 ChA 230nm	6.108	3901400	50.62	294223

	Description	RI (min)	Area (礦*sec)	% Area	Height (礦)
1	W2489 ChA 230nm	5.748	3065494	50.04	267677
2	W2489 ChA 230nm	6.799	3060306	49.96	198189

1	W2489 ChA 230nm	峰1	6.303	9473002	49.29	715829
2	W2489 ChA 230nm	峰2	9.244	9743971	50.71	287685
S				1		

10						
1	W2489 ChA 230nm	峰1	5.843	7410726	49.80	619642
2	W2489 ChA 230nm	峰2	8.562	7471520	50.20	287795

50.01

298027

2

W2489 ChA 230nm

10.084

9793105

E	٢	1
Э	ι	٫
-	2	-

	Description	(min)	Area (礦*sec)	% Area	Height (礦)
1	W2489 ChA 230nm	6.002	3007666	49.78	232639
2	W2489 ChA 230nm	8.349	3034043	50.22	186117

	Description	Name	(min)	Area (礦*sec)	% Area	nergnt (礦)
1	W2489 ChA 230nm	峰1	9.570	6108227	49.74	288635
2	W2489 ChA 230nm	峰2	20.036	6173151	50.26	76452

	Channel Description	Peak Name	RT (min)	Area (礦*sec)	% Area	Height (礦)
1	W2489 ChA 230nm	峰1	6.622	7353939	51.82	480284
2	W2489 ChA 230nm	峰2	7.433	6836650	48.18	370782

		Channel Description	Peak Name	RT (min)	Area (礦*sec)	% Area	Height (礦)
	1	W2489 ChA 230nm	峰1	5.029	2620125	51.09	282847
[2	W2489 ChA 230nm	峰2	5.569	2508190	<mark>48.9</mark> 1	201942

1	W2489 ChA 230nm	7.294	2794210	49.19	231045
2	W2489 ChA 230nm	9.635	2886330	50.81	99213
			а. П		

	Channel Description	Peak Name	RT (min)	Area (礦*sec)	% Area	Height (礦)
1	W2489 ChA 230nm	峰1	5.963	5842232	51.94	313969
2	W2489 ChA 230nm	峰2	6.732	5405224	48.06	241578

			A 220		1
W2489 ChA 230nm	峰1	6.267	6138956	50.00	489935
W2489 ChA 230nm	峰2	7.051	6138059	50.00	365870

	Description	Name	(min)	(礦*sec)	% Area	(礦)
1	W2489 ChA 230nm	峰1	6.503	4416492	50.32	327353
2	W2489 ChA 230nm	峰2	8.650	4361053	49.68	162449

	Description	Name	(min)	(礦*sec)	% Area	(礦)
1	W2489 ChA 230nm	峰1	6.548	153144	4.57	12126
2	W2489 ChA 230nm	峰2	8.751	3201026	95.43	123621

|--|

		Channel Description	Peak Name	RT (min)	Area (礦*sec)	% Area	Height (礦)
Γ	1	W2489 ChA 230nm	峰1	6.933	394554	4.33	30375
ſ	2	W2489 ChA 230nm	峰2	9.847	334354	3.67	14638
	3	W2489 ChA 230nm	峰3	11.447	4104366	45.02	153824
	4	W2489 ChA 230nm	峰4	12.366	4283365	46.98	130900

Channel: W2489 ChA; Channel Desc.: W2489 ChA 230nm; Processing Method: 0

	Channel Description	Peak Name	RT (min)	Area (礦*sec)	% Area	Height (礦)
1	W2489 ChA 230nm	峰1	6.704	231652	2.24	15946
2	W2489 ChA 230nm	峰2	9.385	10733	0.10	302
3	W2489 ChA 230nm	峰3	11.128	772061	7.48	27257
4	W2489 ChA 230nm	峰4	11.793	9307646	90.17	230463

	Description	Name	(min)	Area (礦*sec)	% Area	Height (礦)
1	W2489 ChA 230nm	峰1	10.354	6506488	47.15	179113
2	W2489 ChA 230nm	峰2	13.395	6213052	<mark>45.02</mark>	107990
3	W2489 ChA 230nm	峰3	17.448	441282	3.20	12024
4	W2489 ChA 230nm	峰4	18.397	639113	4.63	11636

2	W2489 ChA 230nm	峰2	13.904	27641	0.31	639
3	W2489 ChA 230nm	峰3	16.507	247537	2.80	8534
4	W2489 ChA 230nm	峰4	17.708	8468310	95.63	141506

	Description	Name	(min)	(礦*sec)	% Area	(礦)
1	W2489 ChA 230nm	峰1	9.199	4210769	49.53	250995
2	W2489 ChA 230nm	峰2	10.362	4290116	50.47	215404

7.Reference

- 1. A. F. Kyle, P. Jakubec, D. M. Cockfield, E. Cleator, J. Skidmore and D. J. Dixon, *Chem. Commun.*, 2011, **47**, 10037-10039.
- 2. W. Peng, J. Wan, B. Xie and X. Ma, Org. Biomol. Chem., 2014, 12, 8336-8345.
- 3. D. Villemin, Z. Belhadj, N. Cheikh, N. Choukchou-Braham, N. Bar and J.-F. Lohier, *Tetrahedron Letters*, 2013, **54**, 1664-1668.
- 4. A. G. Wenzel and E. N. Jacobsen, J. Am. Chem. Soc., 2002, **124**, 12964-12965.
- 5. L. Huang and W. D. Wulff, J. Am. Chem. Soc., 2011, **133**, 8892-8895.
- 6. T. Mecozzi and M. Petrini, J. Org. Chem., 1999, 64, 8970-8972.
- 7. N. Lu, R. Li, Z. Wei, J. Cao, D. Liang, Y. Lin and H. Duan, J. Org. Chem., 2017, 82, 4668-4676.
- 8. K. M. Johnson, M. S. Rattley, F. Sladojevich, D. M. Barber, M. G. Nuñez, A. M. Goldys and D. J. Dixon, *Org. Lett.*, 2012, **14**, 2492-2495.
- 9. B. Wang, T. Xu, L. Zhu, Y. Lan, J. Wang, N. Lu, Z. Wei, Y. Lin and H. Duan, *Org. Chem. Front.*, 2017, **4**, 1266-1271.