Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

A NIR fluorescent sensor for biothiols based on dicyanoisophorone derivative with large Stokes shift and high quantum yield

Ming Qian^{a,b}, Liuwei Zhang^b, Jingyun Wang^{a,b,*}

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China

^bSchool of Bioengineering, Dalian University of Technology, 116024, Dalian, Liaoning, P.R. China

List of contents

Table S1. The comparison of fluorescent probes for biothiols.

- Figure S1. The absorption spectrum and fluorescence spectrum of N-OH.
- Figure S2. The optical properties of fluorophore N-OH.
- Figure S3. The intracellular photostability of N-OH.
- Figure S4. The comparison of four dicyano-derivative based fluorophores.
- Figure S5. The absorption response of N-Bio toward biothiols.
- Figure S6. The time-dependent response of N-Bio toward 100 μ M biothiols.
- Figure S7. The fluorescence response of N-Bio toward biothiols.
- Figure S8. Fluorescence titration of N-Bio toward Hcy and GSH.
- Figure S9. Fluorescence responses of N-Bio with the addition of various testing analytes.
- Figure S10. The color change of N-Bio solution incubated with various analytes.
- Figure S11. Verifying the sensing mechanism of N-Bio toward Cys using HRMS analysis method.
- Figure S12. Cytotoxicity of the probe N-Bio against HeLa cells evaluated by a standard MTT assay.
- Figure S13- S18. Structure verification of the synthesized compound by MS and NMR.

 Table S1. The comparison of fluorescent probes for biothiols.

Probe	Properties	Stokes shift	Fluorescence enhancement	Detection limit	quantum yield
Sensors and Actuators B 246 (2017) 988–993	Abs: 620 nm Em: 688 nm NIR emission	68 nm	Cys: 160-fold GSH: 120-fold Hcy: 70-fold	Cys: 2.93 μM GSH: 59 nM Hcy: 1.29 μM	Not mentioned
Sensors and Actuators B 232 (2016) 732–737	Abs: 400 nm Em: 490 nm UV-Vis region	90 nm	Cys: 44-fold GSH: 31-fold Hcy:35-fold	Cys: 192 nM GSH: 155 nM Hcy: 158 nM	0.262 0.208 0.186
Biosensors and Bioelectronics 85 (2016) 46-52	Abs: 384 nm Em: 480 nm UV-Vis region	96 nm	About 5-fold	Cys: 0.874 μM	Not mentioned
Sensors and Actuators B 255 (2018) 193–202	Abs :380 nm Em: 480 nm Two-photon mode	100 nm	About 10-fold	GSH: 31.4 nM	0.60

	Abs: 451 nm				
	Em: 493 nm			Cys: 7 nM	
RSC Advance, 5 (2015),		42 nm	35-fold	GSH: 6 nM	0.65
62325-62330.	UV-Vis region			Hcv: 9 nM	
				ney. s nivi	
Q ₆ °	Abs :550 nm				
	Em: 660 nm				0.0216
		110 nm	6-fold	Cys: 43 μM	
O' LEL NO2	NIR emission				
Journal of Materials					
Chemistry B, 5 (2017),					
3836-2841	Abs: 550 nm				
	Free 676 mm			Cue: 12.1 mM	Net
	Em: 676 nm			Cys: 12.1 nivi	NOT
		126 nm	About 25-fold	GSH: 11.9 nM	mentioned
Sensors and Actuators B 248 (2017) 338–345	NIR emission			Hcy: 14.5 nM	
0					
\bigcap_{n}					
07NFO	Abs: 400 nm				
	Em: 540 nm	54 nm	Cys: 74-fold	Cys: 0.26 μM	Cys: 0.52
			GSH: 63-fold	GSH: 2.41 μM	GSH: 0.45
	Two-photon		Hcy: 60-fold	Hcy: 4.87 μM	Hcy: 0.43
NO ₂	mode				
Scientific Reports 6 (2016)					
19562-19569.					
	Abs: 387 nm			Cys:17.1 nM	
		1		1	
Sensors and Actuators B	Em: 517nm	137 nm	60-fold	GSH:14.5 nM	0.255
Sensors and Actuators B 241 (2017) 327–334	Em: 517nm UV-Vis region	137 nm	60-fold	GSH:14.5 nM	0.255

NC					
the second	Abs: 560 nm		Cys: 208-fold	Cys: 36.93 nM	
	Em: 680 nm	120 nm	GSH: 204-fold	GSH: 32.56 nM	0.2971
NO ₂			Hcy: 168-fold	Hcy: 65.03 nM	
This work	NIR emission				

Figure S1. The absorption spectrum and fluorescence spectrum of **N-OH** in PBS-ethanol buffer (10 mM, 1:1, v/v).

Figure S2. The optical properties of fluorophore **N-OH.** (a) The absorption spectra of **N-OH** in different solvents. (b) The fluorescence spectra of **N-OH** in different solvents. (c) The pH effect on the **N-OH** in PBS-ethanol buffer (10 mM, 1:1, v/v). (d) The photostability of **N-OH** under the exposure to UV light.

Figure S3. The intracellular photostability of **N-OH** with ceaseless laser exposure for different time. Laser exposure time: (a) 0 min, (b) 2 min, (c) 4 min; (d) 7 min, (e) 10 min, (f) 13 min, (g) 16 min, (h) 19 min, (i) 22 min. Optical parameters: $\lambda_{ex} = 543$ nm; $\lambda_{em} = 620-720$ nm; Bar = 20 μ m.

Α

Figure S4. The comparison of four dicyano-derivative based fluorophores. (A) the comparison of quantum yield of four fluorophores, the data were obtained in ethanol with Rodanmine B (0.66 in ethanol) as the reference compound. (B) observing the solution of four fluorophores by naked eye and under UV light (365 nm). (C) evaluating the brightness of four fluorophores by confocal fluorescence microscopy (a): **DCM-OH;** (b): **NDCM-OH;** (c): **TCF-OH;** (d): **N-OH.**

Figure S5. The absorption response of **N-Bio** toward biothiols in PBS-ethanol buffer (10 mM, 1:1, v/v).

Figure S6. The time-dependent response of **N-Bio** toward 100 μ M biothiols in PBS-ethanol buffer (10 mM, 1:1, v/v). Up: the time-dependent absorption spectra change of **N-Bio** toward Cys(a), GSH(b) and Hcy(c). Down: the time-dependent fluorescence spectra change of **N-Bio** toward Cys(d), GSH(e) and Hcy(f).

Figure S7. The fluorescence response of **N-Bio** toward biothiols in PBS-ethanol buffer (10 mM, 1:1, v/v).

Figure S8. Fluorescence titration of **N-Bio** toward Hcy and GSH in PBS-ethanol buffer (10 mM, 1:1, v/v). (a) Fluorescence spectral change of **N-Bio** (10 μ M) with the addition of different GSH concentrations (0, 1, 2, 3, 4, 5, 6, 10, 20, 40, 60, 80, and 100 μ M) for 20 min; inset: the

fluorescence intensity at 680 nm changes toward different concentration of Cys. (b) Linear relationship between the fluorescence intensity at 680 nm and the low concentrations (0-6 μ M) of Cys. (c) Fluorescence spectral change of **N-Bio** (10 μ M) with the addition of different concentrations of Hcy (0, 1, 2, 3, 4, 5, 6, 10, 20, 40, 60, 80, and 100 μ M) for 20 min; inset: the fluorescence intensity at 680 nm changes toward different concentrations of Hcy. (c) Linear relationship between the fluorescence intensity at 680 nm and the low concentrations (0-6 μ M) of Hcy.

Figure S9. Fluorescence responses of **N-Bio** with the addition of various testing analytes (the concentration is set as: 100 μ M for the Cys, GSH, H₂S, Hcy, 500 μ M for SO₃²⁻, 10 mM for the other amino acids and other ions).

Figure S10. The color change of **N-Bio** solution incubated with various analytes, up: observed by naked eye, down: excited by a UV lamp (365 nm). All the selectivity measurements were conducted in PBS-ethanol buffer (10 mM, 1:1) for 15 min. The concentration is set as: 100 μ M for the Cys, GSH, H₂S, Hcy, SO₃²⁻, 2 mM for the other amino acids and other ions. 1: Phe. 2: Arg, 3: Asp, 4: Trp, 5: Lys, 6: Thr, 7: His, 8: Tyr, 9: Asn, 10: gln, 11: Ala, 12: Pro, 13: Ser, 14: Leu, 15: Glu,

16: Met, 17: Val, 18: Ile, 19: Gly, 20: CO₃²⁻, 21:Cl⁻, 22: HCO₃⁻, 23: Ca²⁺, 24: Na⁺, 25: Mg²⁺, 26: NH₄⁺, 27: glucose, 28: SO₄²⁻, 29: SO₃²⁻, 30: Cys, 31: GSH, 32: Hcy, 33: H₂S.

Figure S11. Verifying the sensing mechanism of **N-Bio** toward Cys using HRMS analysis method (mass negative mode)

Figure S12. Cytotoxicity of the probe **N-Bio** against HeLa cells evaluated by a standard MTT assay, the data are presented as mean ± S.D.

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Figure S14. ¹³C NMR spectrum of N-OH in CDCl₃

-1

Figure S16. ¹H NMR spectrum of N-Bio in CDCl₃

Figure S17. ^{13}C NMR spectrum of N-Bio in CDCl3

Figure S18. HRMS spectrum of N-Bio