## **Electronic Supplementary Information for**

## Design and fabrication of polyaniline/Bi<sub>2</sub>MoO<sub>6</sub> nanocomposites for enhanced visible-light-driven photocatalysis

Tiantian Feng<sup>‡,a</sup>, Hao Yin<sup>‡,a</sup>, Hao Jiang<sup>a</sup>, Xin Chai<sup>a</sup>, Xinle Li<sup>b</sup>, Deyang Li<sup>c</sup>, Jing Wu<sup>a</sup>, Xuanhe Liu<sup>a</sup>,

Bing Sun\*,a

a School of Science, China University of Geosciences (Beijing), Beijing 100183, P. R. China

b The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
United States.

c School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China

\* Corresponding author: B. Sun

Email: <a href="mailto:sunbing@cugb.edu.cn">sunbing@cugb.edu.cn</a>

Tel: +86-10-82322758

‡ These authors contributed equally to this work.

There are no conflicts of interest to declare.



**Figure S1.** SEM images of (a) pure  $Bi_2MoO_6$ , (b)  $PANI_{0.25}/Bi_2MoO_6$ , (c)  $PANI_{0.5}/Bi_2MoO_6$ , (d)  $PANI_{0.75}/Bi_2MoO_6$ , (e)  $PANI_{1.0}/Bi_2MoO_6$  and (f)  $PANI_{2.0}/Bi_2MoO_6$ . (g) Energy dispersive X-Ray (EDX) spectrum of the selected area in Figure S1c.



Figure S2. TEM image of pure Bi<sub>2</sub>MoO<sub>6</sub> at large scale.



Figure S3. The Tauc plots and optical band gap evaluation for pure  $Bi_2MoO_6$  and  $PANI_{0.5}/Bi_2MoO_6$  derived from the UV-Vis absorption spectra.



**Figure S4.** Recycle performance of  $PANI_{0.5}/Bi_2MoO_6$  at the optimized conditions. The adsorbed RhB to  $PANI_{0.5}/Bi_2MoO_6$  was desorbed and re-activated in a mixture of water and ethanol.



Figure S5. Valence band XPS spectra of Bi<sub>2</sub>MoO<sub>6</sub> and PANI<sub>0.5</sub>/Bi<sub>2</sub>MoO<sub>6</sub>.