Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Two Alkali Calcium Borates Exhibiting Second Harmonic Generation and Deep-UV Cutoff Edges

Peng Ren, ‡^{a,b} Yun Yang, ‡^a Hao Li, ^{a,b} Zhihua Yang, ^a Shilie Pan^{a*}

^a CAS Key Laboratory of Functional Materials and Devices for Special Environments;

Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory

of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi

830011, China.

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, China.

To whom correspondence should be addressed:

**E*-mail: slpan@ms.xjb.ac.cn (Shilie Pan).

Tel: (86)-991-3810816. Fax: (86)-991-3838957.

CONTENTS

Figure S1. The coordination environment of three unique Ca atoms and one unique K atom.

Figure S2. The ${}^{\infty}_{1}$ [KO₇] chains extend along the *a*-axis.

Figure S3. The ${}^{\infty}_1[KO_7]$ chain and ${}^{\infty}_1[MO_7]$ (M = K/Rb) chain.

Figure S4. The TG and DSC curves.

Figure S5. IR spectra.

Figure S6. UV-Vis-NIR absorption spectra.

Figure S7. Particle sizes versus SHG intensities.

Figure S8. The calculated band structures.

Figure S9. The total and partial densities of states.

Figure S10. Calculated birefringence (Δn).

Table S1. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters

 $(Å^2 \times 10^3)$ and bond valence analysis.

Table S2. Selected bond distances (Å) and angles (deg).

 Table S3. Dipole moment caculations.

Table S4. The B-O connection modes of disorder-free compounds in the system of

M-M'-B-O (M = alkali and M' = alkaline metal cations).

Table S5. Assignment of absorption peaks in the infrared spectra.

Figure S1. The coordination environment of three unique Ca atoms and one unique K atom: (a) the $[Ca(1)O_9]$ tricapped trigonal prisms and the ${}^{\infty}_1[Ca(1)O_8]$ chain; (b) the coordination environment of the Ca(2) atom and the three-dimensional network; (c) the $[Ca(3)O_8]$ bicapped trigonal prism; (d) the coordination environment of the K(1) atom and the ${}^{\infty}_1[KO_7]$ chain.

Figure S2. The ${}^{\infty}_{1}$ [KO₇] chains extend along the *a*-axis.

Figure S4. The TG and DSC curves of (a) $KCa_4B_3O_9$ and (b) $K_{0.59}Rb_{0.41}Ca_4B_3O_9$.

Figure S5. IR spectra of (a) $KCa_4B_3O_9$ and (b) $K_{0.59}Rb_{0.41}Ca_4B_3O_9$.

Figure S6. UV-Vis-NIR absorption spectra of (a) $KCa_4B_3O_9$ and (b) $K_{0.59}Rb_{0.41}Ca_4B_3O_9$.

(b)

Figure S7. Particle sizes versus SHG intensities of (a) $KCa_4B_3O_9$ and KDP, (b) $K_{0.59}Rb_{0.41}Ca_4B_3O_9$ and KDP.

Figure S8. The calculated band structures of (a) $KCa_4B_3O_9$ and (b) $K_{0.59}Rb_{0.41}Ca_4B_3O_9$.

Figure S9. The total and partial densities of states of (a) $KCa_4B_3O_9$ and (b) $K_{0.59}Rb_{0.41}Ca_4B_3O_9$.

Figure S10 Calculated birefringence (Δn) of (a) KCa₄B₃O₉ and (b) K_{0.59}Rb_{0.41}Ca₄B₃O₉.

KCa ₄ B ₃ O ₉					
Atom	x	у	Z	U_{eq}	BVS
K(1)	7500	4184(3)	4177(6)	19(1)	1.12
Ca(1)	5000	5000	-495(5)	13(1)	1.942
Ca(2)	5275(2)	2136(2)	8077(4)	11(1)	2.196
Ca(3)	7500	6530(3)	6758(5)	13(1)	2.105
B(1)	5000	5000	5200(20)	4(3)	2.850
B(2)	7500	3804(16)	9730(30)	19(4)	2.997
B(3)	7500	1803(18)	6030(30)	14(4)	2.873
O(1)	7500	4640(9)	8370(17)	12(2)	1.868
O(2)	5271(6)	6020(7)	6258(12)	10(1)	2.003
O(3)	5000	5000	3090(20)	19(2)	2.157
O(4)	6379(7)	1918(8)	4936(12)	18(2)	2.139
O(5)	6373(7)	3357(7)	10546(12)	15(2)	2.059
O(6)	7500	1463(9)	8055(19)	16(2)	1.965
		K _{0.59} Rb _{0.41} C	a4B3O9		
Atom	Х	У	Z	U_{eq}	BVS
K(1)/Rb(1)	7500	4198(1)	4232(2)	14(1)	1.265
Ca(1)	5000	5000	-514(3)	14(1)	1.907
Ca(2)	5286(1)	7136(1)	3059(2)	10(1)	2.182
Ca(3)	7500	6530(2)	6747(3)	11(1)	2.156
B(1)	5000	5000	5182(14)	7(2)	2.919
B(2)	7500	3789(9)	9735(16)	10(2)	2.896
B(3)	7500	6745(11)	986(15)	14(2)	2.968

Table S1. Atomic coordinates ($\times 10^4$), equivalent isotropic displacement parameters (Å² $\times 10^3$) and bond valence analyses of KCa₄B₃O₉ and K_{0.59}Rb_{0.41}Ca₄B₃O₉.^{a,b} U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

	O(1)	7500	4658(6)	8357(13)	24(2)	1.825
	O(2)	5277(4)	6009(4)	6243(7)	11(1)	2.005
	O(3)	5000	5000	3107(11)	14(1)	2.182
	O(4)	6383(4)	6902(4)	-89(6)	12(1)	2.164
	O(5)	8626(4)	3334(4)	10524(6)	13(1)	2.076
_	O(6)	7500	6502(5)	3033(11)	12(1)	2.047
	^a Bond	valences calculated	with the program	Bond Valence	Calculator	Version 2.00,

Bond valences calculated with the program Bond Valence Calculator Version 2.00, Hormillosa, C., Healy, S., Stephen, T. McMaster University (1993).

b Valence sums calculated with the formula: $S_i = \exp[(R_0 - R_i)/B]$, where $S_i =$ valence of bond "*i*" and B = 0.37. Superscripts indicate the number of equivalent bonds for anions.

KCa ₄ B ₃ O ₉					
K(1)-O(6)#1	2.718(12)	Ca(2)-O(3)#9	2.471(4)		
K(1)-O(1)	2.790(12)	Ca(2)-O(5)#7	2.474(8)		
K(1)-O(5)#2	2.822(9)	Ca(2)-O(6)	2.486(5)		
K(1)-O(5)#3	2.822(9)	Ca(2)-O(2)#10	2.498(8)		
K(1)-O(3)#4	2.903(5)	Ca(3)-O(1)	2.413(11)		
K(1)-O(3)	2.903(5)	Ca(3)-O(6)#1	2.421(13)		
K(1)-O(4)	2.905(10)	Ca(3)-O(4)#11	2.435(8)		
K(1)-O(4)#5	2.905(10)	Ca(3)-O(4)#12	2.435(8)		
Ca(1)-O(3)	2.345(14)	Ca(3)-O(2)	2.460(8)		
Ca(1)-O(2)#6	2.441(9)	Ca(3)-O(2)#5	2.460(8)		
Ca(1)-O(2)#2	2.441(9)	Ca(3)-O(5)#13	2.543(9)		
Ca(1)-O(5)#2	2.481(8)	Ca(3)-O(5)#1	2.543(9)		
Ca(1)-O(5)#6	2.481(8)	B(1)-O(3)	1.38(2)		
Ca(1)-O(4)#7	2.661(9)	B(1)-O(2)	1.389(11)		
Ca(1)-O(4)#1	2.661(9)	B(1)-O(2)#10	1.389(11)		
Ca(1)-O(1)#6	2.788(5)	B(2)-O(1)	1.31(2)		
Ca(1)-O(1)#2	2.788(5)	B(2)-O(5)#5	1.406(14)		
Ca(2)-O(4)	2.377(8)	B(2)-O(5)	1.406(14)		
Ca(2)-O(4)#8	2.396(9)	B(3)-O(6)	1.38(2)		
Ca(2)-O(5)	2.435(8)	B(3)-O(4)	1.396(12)		
Ca(2)-O(2)#9	2.443(9)	B(3)-O(4)#5	1.396(12)		
O(3)-B(1)-O(2)	119.7(6)	O(5)#5-B(2)-O(5)	116.6(17)		
O(3)-B(1)-O(2)#10	119.7(6)	O(6)-B(3)-O(4)	121.3(7)		
O(2)-B(1)-O(2)#10	120.6(12)	O(6)-B(3)-O(4)#5	121.3(7)		
O(1)-B(2)-O(5)#5	121.6(8)	O(4)-B(3)-O(4)#5	117.0(13)		
O(1)-B(2)-O(5)	121.6(8)				

Table S2. Selected bond distances (Å) and angles (deg) for $KCa_4B_3O_9$ and $K_{0.59}Rb_{0.41}Ca_4B_3O_9$.

#1x,y+1/2,z-1/2 #2x,y #5-x+3/2,y,z #6-x #9x,y-1/2,z+1/2 #10-5 #13-x+3/2,y+1/2,z-1/2 #14x	y,z-1 +1,-y+1,z-1 x+1,-y+1,z ,y,z+1	#3-x+3/2,y,z-1 #7-x+1,-y+1/2,z-1/2 #11-x+3/2,y+1/2,z+1/2 #15x+1/2,-y+1,z+1	#4x+1/2,-y+1,z #8-x+1,-y+1/2,z+1/2 #12x,y+1/2,z+1/2 #16x,y-1/2,z-1/2
	K _{0.59} Rb ₀	_{.41} Ca ₄ B ₃ O ₉	
K(1)/Rb(1)-O(1)	2.743(9)	Ca(2)-O(6)	2.463(2)
K(1)/Rb(1)-O(6)	2.772(6)	Ca(2)-O(5)#8	2.477(4)
K(1)/Rb(1)-O(5)#1	2.877(4)	Ca(2)-O(3)	2.4843(18)
K(1)/Rb(1)-O(5)#2	2.877(4)	Ca(2)-O(2)#9	2.519(4)
K(1)/Rb(1)-O(3)	2.906(2)	Ca(3)-O(1)	2.402(7)
K(1)/Rb(1)-O(3)#3	2.906(2)	Ca(3)-O(4)#11	2.419(4)
K(1)/Rb(1)-O(4)#4	2.937(5)	Ca(3)-O(4)#12	2.419(4)
K(1)/Rb(1)-O(4)#5	2.937(5)	Ca(3)-O(6)	2.423(7)
Ca(1)-O(3)	2.362(8)	Ca(3)-O(2)	2.459(4)
Ca(1)-O(2)#14	2.432(5)	Ca(3)-O(2)#13	2.459(4)
Ca(1)-O(2)#2	2.432(5)	Ca(3)-O(5)#10	2.530(5)
Ca(1)-O(5)#1	2.508(4)	Ca(3)-O(5)#7	2.530(5)
Ca(1)-O(5)#8	2.508(4)	B(1)-O(3)	1.353(12)
Ca(1)-O(4)#15	2.656(5)	B(1)-O(2)	1.386(6)
Ca(1)-O(4)	2.656(5)	B(1)-O(2)#15	1.386(6)
Ca(1)-O(1)#14	2.783(3)	B(2)-O(1)	1.348(12)
Ca(1)-O(1)#2	2.783(3)	B(2)-O(5)	1.404(7)
Ca(2)-O(4)	2.376(4)	B(2)-O(5)#13	1.404(7)
Ca(2)-O(4)#6	2.415(4)	B(3)-O(6)	1.364(12)
Ca(2)-O(5)#7	2.415(4)	B(3)-O(4)	1.390(7)
Ca(2)-O(2)	2.451(5)	B(3)-O(4)#13	1.390(7)
O(3)-B(1)-O(2)	120.0(4)	O(1)-B(2)-O(5)	121.5(4)
O(3)-B(1)-O(2)#15	120.0(4)	O(1)-B(2)-O(5)#13	121.5(4)
O(2)-B(1)-O(2)#15	120.1(8)	O(5)-B(2)-O(5)#13	116.8(9)
O(6)-B(3)-O(4)	121.4(4)	O(4)-B(3)-O(4)#13	117.2(8)

0	4		1 4	4	• • •	4
S.	ummetru	transformations	need to	generate en	illivalent	atome
D.	y minitud y	ti ansioi mations	uscu iv	generate eq	uivaiciit	atoms.

O(6)-B(3)-O(4)#13 121.4(4)

Symmetry transformations	s used to genera	te equivalent atoms:

#1 -x+3/2,y,z-1	#2 x,y,z-1	#3 x+1/2,-y+1,z	#4 x,y-1/2,z+1/2
#5 -x+3/2,y-1/2,z+1/2	#6 -x+1,-y+3/2,z+1/2	#7 -x+3/2,y+1/2,z-1/2	#8 x-1/2,-y+1,z-1
#9 -x+1,-y+3/2,z-1/2	#10 x,y+1/2,z-1/2	#11 -x+3/2,y,z+1	#12 x,y,z+1
#13 -x+3/2,y,z	#14 -x+1,-y+1,z-1	#15 -x+1,-y+1,z	#16 x+1/2,-y+1,z+1

$K_{0.59}Rb_{0.41}Ca_4(BO_3)_3$						
				mag	gnitude	
species	x(a)	y(b)	z(c)	dahara	×10 ⁻⁴	
				debye	esu∙cm/Å ³	
B(1)O ₃	0	-0.82	-0.53	0.97	48.64	
B(2)O ₃	0	-0.20	1.08	1.10	55.20	
B(3)O ₃	0	0	0.10	0.10	5.02	
$\Sigma \operatorname{BO}_3$	0	0	2.62	2.62	131.03	

Table S3. Dipole moment calculations of $K_{0.59}Rb_{0.41}Ca_4(BO_3)_3$.

ICSD number	compounds	P/Q	Space group	B-O units	B-O framework
422221		0.05	~~~~	BO ₃ ,	
433331	$K_2BaB_{16}O_{26}$	0.25	$C222_1$	BO_4	$[B_{16}O_{26}]$ network
10(527		0.22		BO ₃ ,	
426537	$L1Ba(B_9O_{15})$	0.33	КЗСН	BO_4	$[B_9O_{15}]$ network
02015	$Lig_r(\mathbf{P},\mathbf{O}_r)$	0.22	$D_{2} \circ H$	BO ₃ ,	[P.O.] notwork
93013	$LISI(B_9O_{15})$	0.55	КЭСП	BO_4	$[B_9O_{15}]$ network
02014	$N_0 D_0 (D \cap)$	0.22	$D2 \circ H$	BO ₃ ,	[P.O.] notwork
95014	NaDa(D9O15)	0.55	KSCH	BO_4	
426110	$I_{i}B_{2}(B_{2}O_{1})$	0.33	$R_{-3}cH$	BO ₃ ,	[B.O.] network
420110		0.55	<i>K-5011</i>	BO_4	
CCDC	RbBaB-Oto	0.43	P2./c	BO ₃ ,	[B-O.a] network
1848456	Robab/Ol2	0.45	121/0	BO_4	
241859	KBaB-Oo	0.6	$P2_1/c$	BO ₃ ,	[B _c O ₀] laver
211037	MDuD 309	0.0	1 21/0	BO_4	[2509] myor
79716	KSr(B ₅ O ₀)	0.6	P_{21}/c	BO ₃ ,	[B ₅ O ₀] laver
///10	Kor(D309)	0.0	1 21/0	BO_4	[2509] myor
424353	NaBa(B ₅ O ₀)	0.6	$P2_{1}/c$	BO ₃ ,	[B ₅ O ₀] laver
12.000	1(424(2309)	0.0		BO_4	
245570	NaSrB₅O₀	0.6	$P2_{1}/c$	BO ₃ ,	[B ₅ O ₀] laver
				BO_4	[
424308	$Li_2Sr_4(B_{12}O_{23})$	0.83	$P2_{1}/c$	BO ₃ ,	isolated $[B_2O_5]^{4-}$,
				BO_4	[B ₁₀ O ₁₈] network
61165	$Na_3Ca(B_5O_{10})$	1	<i>P</i> -1	BO ₃ ,	isolated [B ₅ O ₁₀] ⁵⁻
		-		BO_4	
417958	$Na_3Ca(B_5O_{10})$	1	<i>P</i> -1	BO ₃ ,	isolated [B ₅ O ₁₀] ⁵⁻
		D5U10) I <i>Г</i> -1	BO_4		

Table S4. The B-O connection modes of the disorder-free compounds in the system of M-M'-B-O (M = alkali and M' = alkaline metal cations).

260005	$Na_{2}Sr(B_{2}O_{10})$	1	<i>P</i> _1	BO ₃ ,	isolated [B-Q.,] ⁵⁻
200003	Na351(D5O10)	1	1 -1	BO_4	
71875	LiBa ₂ (B ₂ O ₁₀)	1	$P12_{1}/m1$	BO ₃ ,	[B-Oto] chain
1075	Libu ₂ (15010)	1	1 12 [////1	BO_4	
417919	$CsBa(B_3O_6)$	1	P321	BO_3	isolated [B ₃ O ₆] ³⁻ ring
417959	Να-Μσ(Β-Ωιο)	1	Phea	BO ₃ ,	isolated [B-O10] ⁵⁻
11755	14031115(15)010)	1	1000	BO_4	1301ated [125010]
248201	NaBe(B3O6)	1	$Pna2_1$	BO_3	[BO ₂] chain
248202	KBe ₂ B ₃ O ₇	1.67	C2/c	BO_3	isolated [B ₃ O ₇] ⁵⁻
248204	KaBer(BaOa)a	1.67	P2.	BO.	isolated [BO ₃] ³⁻ ,
$X_{3}DC_{6}(D_{3}O_{7})$	K3DC6(D3O7)3	1.07	1 2]	DO3	isolated [B ₂ O ₅] ⁴⁻
248203	KBa B.O.	1.67	Pmm?	RO.	isolated [BO ₃] ³⁻ ,
240203 K	KDC2D3O7	1.07	$I mn Z_1$	D O ₃	[BO ₂] chain
248205	DhDa D ()	1.67	Diana	PO	isolated [BO ₃] ³⁻ ,
248203	K0Dc ₂ D ₃ O ₇	1.07	$I mn z_1$	BO3	[BO ₂] chain
249341	$Na_2(BeB_2O_5)$	2	C2/c	BO ₃	isolated [B ₂ O ₅] ⁴⁻
237764	No Be B O	2.5	<i>D</i> 1	BO	Isolated [BO ₃] ³⁻ ,
237704	$\operatorname{Na}_2\operatorname{Dc}_4\operatorname{D}_4\operatorname{O}_{11}$	2.5	I I	BO ₃	isolated [B ₂ O ₅] ⁴⁻
171422	KCa ₄ (BO ₃) ₃	3	Ama2	BO ₃	isolated [BO ₃] ³⁻
171423	KSr ₄ (BO ₃) ₃	3	Ama2	BO3	isolated [BO ₃] ³⁻
171421	NaCa ₄ (BO ₃) ₃	3	Ama2	BO ₃	isolated [BO ₃] ³⁻
Not	PhSr (BO)	3	1ma?	BO	isolated [BO 13-
included	KUSI4(DO3)3	J	Amuz	DO3	
249567	NaMg(BO ₃)	3	C2/c	BO ₃	isolated [BO ₃] ³⁻
80110	NaBa(BO ₃)	3	<i>C</i> 2/ <i>m</i>	BO ₃	isolated [BO ₃] ³⁻
170861	LiSr ₄ (BO ₃) ₃	3	Ia-3d	BO ₃	isolated [BO ₃] ³⁻
250195	NaBa ₄ (BO ₃) ₃	3	Ia-3d	BO_3	isolated [BO ₃] ³⁻
170862	NaSr ₄ (BO ₃) ₃	3	Ia-3d	BO_3	isolated [BO ₃] ³⁻
427287	LiBe (BO ₃)	3	<i>P</i> -1	BO_3	isolated [BO ₃] ³⁻

250)598	Cs ₄ Mg ₄ (BO ₃) ₄	3	$P2_{1}/c$	BO_3	isolated [BO ₃] ³⁻
73	218	LiBa(BO ₃)	3	$P2_{1}/c$	BO_3	isolated [BO ₃] ³⁻
172	2420	NaSrBO ₃	3	$P2_{1}/c$	BO_3	isolated [BO ₃] ³⁻
92	842	LiSr(BO ₃)	3	$P2_{1}/c$	BO_3	isolated [BO ₃] ³⁻
253	3696	CsCaBO ₃	3	<i>P</i> 2 ₁ 3	BO_3	isolated [BO ₃] ³⁻
174	4336	KMg(BO ₃)	3	<i>P</i> 2 ₁ 3	BO_3	isolated [BO ₃] ³⁻
253	3695	RbCaBO ₃	3	<i>P</i> 2 ₁ 3	BO_3	isolated [BO ₃] ³⁻
236	6575	RbMg(BO ₃)	3	<i>P</i> 2 ₁ 3	BO_3	isolated [BO ₃] ³⁻
99	386	LiCa(BO ₃)	3	Pbca	BO_3	isolated [BO ₃] ³⁻
190	0738	CsBe ₄ (BO ₃) ₃	3	Pnma	BO_3	isolated [BO ₃] ³⁻
171	1666	RbBe ₄ (BO ₃) ₃	3	Pnma	BO_3	isolated [BO ₃] ³⁻
99	503	Li ₄ Ca(BO ₃) ₂	3	Pnnm	BO_3	isolated [BO ₃] ³⁻

mode description (cm ⁻¹)	KCa ₄ B ₃ O ₉	$K_{0.59}Rb_{0.41}Ca_4B_3O_9\\$
asymmetric stretching of B ₃ -O	1273, 1232, 1209, 1147	1266, 1230, 1203, 1150
symmetric stretching of B ₃ -O	919, 902	920, 902
out-of-plane bending of B ₃ -O	772, 731	773, 730
in-plane bending of B ₃ -O	638, 622, 599	635, 618, 599

 Table S5. Assignment of absorption peaks in the infrared spectra of the title compounds.