Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information for:

Aerobic oxidation of C₄-C₆ α , ω - diols to the diacids in base-free medium over zirconia-supported (bi)metallic catalysts.

Modibo Mounguengui-Diallo, Achraf Said, Denilson Da Silva Perez, Clémence Nikitine, Laura Puchot, Youssef Habibi, Catherine Pinel, Noémie Perret, and Michèle Besson*

Univ Lyon, Univ Claude Bernard, CNRS, IRCELYON, UM5256, 2 Avenue Albert Einstein 69626 Villeurbanne (France) LGPC, CNRS/CPE Lyon/UCBL-Université de Lyon, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne (France)

Institut FCBA, InTechFibres, 38044 Grenoble (France)

Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, (Luxembourg)

*E-mail : michele.besson@ircelyon.univ-lyon1.fr

New Journal of Chemistry

Contents

Scheme S1. Possible reaction networks to 1,4-butanediol (BDO), 1,5-pentanediol (PDO), and 1,6-hexanediol (HDO) from lignocellulosic biomass.

Fig. S1. Evolution of (\diamond) diol conversion and yields into (\blacklozenge) ALD, (\blacktriangle) HA, (\Box) AA and (\bullet) DA from (a) PDO , (b) HDO over Au-Pt/ZrO₂ under 40 bar of air at 90°C and diol/metal = 100 in base-free medium, (*****) Carbon balance, CB, and (\bullet) TOC.

Fig. S2. Comparison of experimental (points) and predicted (lines) concentration-time profiles for (a) PDO oxidation over Pt, (b) PDO over Au-Pt, (c) PDO over Au-Pd, and (d) HDO over Pt. Reaction conditions: 0.1 M diol, 70°C, 40 bar air, diol/metal molar ratio = 100.

Fig.S3. Comparison of experimental (points) and predicted (lines) concentration-time profiles over the whole range of the reaction: PDO oxidation over (a) Pt, (b)Au-Pd, (c) Au-Pd, HDO over (d) Pt, (e) Au-Pt, (f) Au-Pd

Fig. S4. Evolution of (\bigtriangledown) PDO conversion and yields of (\clubsuit) ALD, (\blacktriangle) HA, (\Box) AA, and (\bullet) DA versus time depending on NaOH amount ratio at 70°C under 40 bar of air over Au/ZrO₂: (a) NaOH =1 eq., (b) NaOH = 2 eq., (c) NaOH = 4 eq., (\divideontimes) carbon balance, and (\bigstar) TOC measurement.

Fig. S5. Reaction profile for HDO oxidation over Au/ZrO₂ in the presence of 2 eq. NaOH. (\bigtriangledown) HDO conversion and (\diamondsuit) ALD, (\blacktriangle) HA, (\Box) AA and (\bullet) DA yields versus time at 70°C, 40 bar of air, (\divideontimes) carbon balance.

Scheme S1. Possible reaction networks to 1,4-butanediol (BDO), 1,5-pentanediol (PDO), and 1,6-hexanediol (HDO) from lignocellulosic biomass.

Fig. S1. Evolution of (\diamond) diol conversion and yields into (\blacklozenge) ALD, (\blacktriangle) HA, (\Box) AA and (\bullet) DA from (a) PDO , (b) HDO over Au-Pt/ZrO₂ under 40 bar of air at 90°C and diol/metal = 100 in base-free medium, (*****) Carbon balance, CB, and (\bullet) TOC.

Fig. S2. Comparison of experimental (points) and predicted (lines) concentration-time profiles for (a) PDO oxidation over Pt, (b) PDO over Au-Pt, (c) PDO over Au-Pd, and (d) HDO over Pt. Reaction conditions: 0.1 M diol, 70°C, 40 bar air, diol/metal molar ratio = 100.

Fig. S3. Comparison of experimental (points) and predicted (lines) concentration-time profiles over the whole range of the reaction: PDO oxidation over (a) Pt, (b) Au-Pd, (c) Au-Pd, HDO over (d) Pt, (e) Au-Pt, (f) Au-Pd

Fig. S4. Evolution of (\bigtriangledown) PDO conversion and yields of (\clubsuit) ALD, (\blacktriangle) HA, (\Box) AA, and (\bullet) DA versus time depending on NaOH amount ratio at 70°C under 40 bar of air over Au/ZrO₂: (a) NaOH =1 eq., (b) NaOH = 2 eq., (c) NaOH = 4 eq., (\divideontimes) carbon balance, and (\bigstar) TOC measurement.

Fig. S5. Reaction profile for HDO oxidation over Au/ZrO₂ in the presence of 2 eq. NaOH. (\bigtriangledown) HDO conversion and (\clubsuit) ALD, (\blacktriangle) HA, (\Box) AA and (\bullet) DA yields versus time at 70°C, 40 bar of air, (\divideontimes) carbon balance.