Carboxylic acid functionalized SBA-15 supported Pd nanocatalyst: An efficient catalyst for hydrogenation of nitro benzene to aniline in water

Saidulu Ganji^{a, b, c, *}, Padma Bukya^d, Zhong-Wen Liu^b, Kamaraju Seetha Rama Rao^a, David Raju Burri^{a, *}

Particles distribution:

Fig. S1.Paricle size distribution of Pd/SBACOOH catalyst

Reusability Data:

Fig. S2. Reusability of Pd/SBA-COOH catalyst

XRD Pattern of Pd/SBA-15

Fig. S3. XRD pattern of 5Wt% Pd/SBA-15

S.No	Catalyst	Solvent	H ₂ Source	Temp(°C)	TOF(h ⁻¹)	Referance
1*	Pd/SBA-COOH	Water	$N_2H_4.H_2O$	RT	3684.7	This Work
	Pd/SBA-15	Water	N ₂ H ₄ .H ₂ O	RT	144.5	
	Pd/SiO ₂ ^a	Water	N ₂ H ₄ .H ₂ O	RT	95.74	
	Pd/C ^b	Water	N ₂ H ₄ .H ₂ O	RT	75.24	
2	RhNPs/SBA-15	Water	N ₂ H ₄ .H ₂ O	RT	6117	1
3	NAP-Mg-Au(0)	Water	NaBH ₄	RT	1.8	2
4	Rh/PICP	Ethanol	N ₂ H ₄ .H ₂ O	60	990	3
5	Rh/Fe ₃ O ₄	Ethanol	$N_2H_4.H_2O$	80	102.9	4
6	Magnetic Au NPs	Ethanol	TMDS	RT	95	5
7	Au/TiO2-VS	CO/H2O	EtOH/H2O	25	99	6
8	Pt NWs	p-Xylene	H ₂	80	57.17	7
9	Fe(OAc) ₂	THF	N ₂ H ₄ .H ₂ O	100	3.33	8
10	Pd/CF	Ethanol	H ₂	35	307	9
11	Fe(acac) ₂	THF	TMDS	60	0.42	10
12	ReIO ₂ (PPh ₃) ₂	Toluene	PhMe ₂ SiH	110	0.79	11
13	NAP-Mg-Pd(0)	THF	H ₂	RT	32.99	12

Table-S1:Comparison of activity of various reported catalysts including presentPd/SBA-COOH

1* 5Wt% Pd was used

^aBET surface area 374 m²/g.

^bBET surface area 1141 m2 g

TOF is calculated using the formula

TOF= No. of moles of product formed/ [mole of metal*time(h)]

References:

- S. Ganji, S. S. Enumula, R. K. Marella, K. S. Rama Rao and D. R. Burri, *Catal. Sci. Technol.*, 2014, 4, 1813
- K. Layek, M. L. Kantam, M. Shirai, D. N. Hamane, T. Sasakid and H. Maheswaran, Green Chem., 2012, 14, 3164
- P. Luo, K. Xu, R. Zhang, L. Huang, J. Wang, W. Xing and J. Huang, *Catal. Sci. Technol.*, 2012, 2, 301
- 4. Y. Jang, S. Kim, S. W. Jun, B. H. Kim, S. Hwang, I. K. Song, B. M. Kim and T. Hyeon, *Chem. Commun.*, 2011, 47, 3601
- 5. S. Park, I. S. Lee and J. Park, Org. Biomol. Chem., 2013, 11, 395
- L. He, L.-C. Wang, H. Sun, J. Ni, Y. Cao, H.-Y. He and K.-N. Fan, *Angew. Chem., Int. Ed.*, 2009, 48, 9538
- L. Hu, X. Cao, L. Chen, J. Zheng, J. Lu, X. Sun and H. Gu, *Chem. Commun.*, 2012, 48, 3445
- R. V. Jagadeesh, G. Wienhofer, F. A. Westerhaus, A. E. Surkus, M. M. Pohl, H. Junge, K. Junge and M. Beller, *Chem. Commun.*, 2011, 47, 10972
- 9. H. Wu, L. Zhuo, Q. He, X. Liao and B. Shi, Applied Catalysis A: General, 2009, 366, 44
- L. Pehlivan, E. Métay, S. Laval, W. Dayoub, P. Demonchaux, G. Mignani and M. Lemaire, *Tetrahedron*, 2011, 67, 1971
- 11. R. G. de Noronha, C. C. Ramao and A.C. Fernandes, J. Org. Chem., 2009, 74, 6960
- M. L. Kantam, R. Chakravarti, U. Pal, B. Sreedhar and S. Bhargava, *Adv. Synth. Catal.*, 2008, **350**, 822