Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information:

Self-Assembly with Fluorescence Readout in a Free Base Dipyrrin–Polymer Triggered by Metal Ion Binding in Aqueous Solution

Rui Liu, Pothiappan Vairaprakash and Jonathan S. Lindsey*

Department of Chemistry North Carolina State University Raleigh, North Carolina 27695-8204

Email: jlindsey@ncsu.edu

Table of Contents

Торіс	Page
1. Complexation with ZnX ₂ species	S2-S3
2. NMR spectra of new compounds	S4–S13

(B) DLS data of **Pod-Dipyrrin** treated with 10 equiv of $ZnCl_2$ ($D_h = 273$ nm, red line), $Zn(OTf)_2$ ($D_h = 270$ nm, blue line), $ZnSO_4$ ($D_h = 284$ nm, orange line), and $Zn(OAc)_2$ ($D_h = 269$ nm, black line);

(C) absorption spectra of **Pod-Dipyrrin** treated with 440 equiv of ZnCl₂ (red dashed line), Zn(OTf)₂ (blue dashed line), ZnSO₄ (orange dashed line), and Zn(OAc)₂ (black dashed line); and

(D) DLS data of **Pod-Dipyrrin** treated with 440 equiv of $ZnCl_2$ ($D_h = 243$ nm, red dashed line), $Zn(OTf)_2$ ($D_h = 256$ nm, blue dashed line), $ZnSO_4$ ($D_h = 268$ nm, orange dashed line), and $Zn(OAc)_2$ ($D_h = 260$ nm, black dashed line). The change in particle size in going from 10 to 440 equiv is -30 nm ($ZnCl_2$), -14 nm ($Zn(OTf)_2$), -16 nm ($ZnSO_4$), and -9 nm ($Zn(OAc)_2$).

Figure S2. DLS data of **Pod-Dipyrrin** in water (1.0 mg/mL) treated with 10 equiv Zn(II) (solid line) and 440 equiv Zn(II) (dashed line) at room temperature. (A) ZnCl₂; (B) Zn(OTf)₂; (C) ZnSO₄ (the data are essentially identical); and (D) Zn(OAc)₂.

Figure S3. ¹H NMR spectrum of **2**.

Figure S4. 13 C NMR spectrum of **2**.

Figure S5. ¹H NMR spectrum of **3**.

Figure S6. 13 C NMR spectrum of **3**.

Figure S7. ¹H NMR spectrum of **4**.

Figure S8. 13 C NMR spectrum of 4.

Figure S9. ¹H NMR spectrum of **5**.

Figure S10. ¹³C NMR spectrum of 5.

Figure S11. ¹H NMR spectrum of **6**.

Figure S12. ¹³C NMR spectrum of 6.