Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Naphthoylhydrazones: coordination to metal ions and biological screening

Nádia Ribeiro,¹ Adelino M. Galvão,¹ Clara S. B. Gomes,^{1,2} Helena Ramos,³ Rute Pinheiro,³ Lucilia Saraiva, ³ Epole Ntungwe,⁴ Vera Isca, ^{4,5} Patricia Rijo,^{4,5} Isabel Cavaco,^{1,6} Filipa Ramilo-Gomes,^{1,7} Rita C. Guedes,⁷ João Costa Pessoa,¹ Isabel Correia^{1,*}

¹Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Portugal
²LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
³LAQV-REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
⁴CBIOS - Research Center for Biosciences & Health Technologies, U. Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
⁵Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
⁶ Departamento de Química Bioquímica e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
⁷Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade

de Lisboa, Lisboa, Portugal

ESI 1 - X-ray diffraction

The molecular structure of HL² was unambiguously determined by X-ray diffraction. An ORTEP diagram presenting one molecule of the asymmetric unit is depicted in Fig. 1, and selected bond lengths and angles are listed in Table S1.

Compound HL² crystallized as yellow prisms, in the monoclinic system, space group $P2_1/c$, showing three independent molecules in the asymmetric unit (Fig. S1).

Figure S1 - Asymmetric unit of compound HL², viewed along *a*.

The structures of molecules A and B of the asymmetric unit display almost planar backbones, with angles between the planes of the naphthoyl substituent and the furanhydrazide group of 11.15(10) and 13.97(11)°, respectively. On the other hand, for molecule C, this angle increases to 32.33(19)°. All distances and angles are within the expected values for similar compounds.¹

The supramolecular arrangement of compound HL^2 is mainly generated by classic O– H···O, N–H···O and N–H···N hydrogen bonds, as depicted in Fig. S2 and described in Table S2.

Table S1 - Selected bond lengths (Å) and angles (°) for compound HL².

		HL ²	
	molecule A	molecule B	molecule C
Bond lengths (Å)			
C1–O1	1.362(4)	1.355(4)	1.321(4)
C1–C2	1.336(5)	1.335(5)	1.346(6)
C2–C3	1.431(6)	1.400(6)	1.384(6)
C3–C4	1.306(6)	1.306(6)	1.292(6)
C4–O1	1.359(5)	1.371(5)	1.375(5)
C1–C5	1.445(5)	1.430(5)	1.420(5)
C5–N1	1.265(4)	1.263(4)	1.258(4)
N1-N2	1.384(3)	1.385(3)	1.382(3)
N2-C6	1.335(3)	1.336(3)	1.345(3)
C6–O2	1.248(3)	1.248(3)	1.247(3)
C6–C7	1.478(4)	1.467(4)	1.476(4)
C8–O3	1.353(4)	1.336(4)	1.376(5)
Angles (°)			
O1-C1-C5	119.1(3)	119.4(3)	119.4(3)
C5-N1-N2	115.0(3)	115.5(2)	115.7(2)
C6-N2-N1	117.77(17)	117.96(18)	118.66(17)
O2-C6-N2	121.3(3)	121.3(3)	121.4(3)
N2-C6-C7	117.8(2)	118.2(3)	117.3(2)
O3–C8–C7	121.4(3)	121.9(3)	121.4(4)

 Table S2 - List of hydrogen bonds for HL² [Å and °].

D-HA	<i>d</i> (D-H)	<i>d</i> (HA)	<i>d</i> (DA)	<(DHA)
O3A-H30AO2A ⁱ	0.82	1.85	2.5767(9)	146
O3B-H30BO2B ⁱⁱ	0.82	1.80	2.5325(9)	147
O3C-H30CO2C	0.82	1.93	2.6262(9)	142
N2A-H20AO2C	1.06	1.96	2.9311(10)	152
N2A-H20AN1C	1.06	2.55	3.3376(12)	131
N2B-H20BO2A ⁱ	1.03	2.02	2.9809(10)	154
N2B-H20BN1A [#]	1.03	2.60	3.4067(12)	136
N2C-H20CO2B	1.04	2.08	2.9231(10)	137
N2C-H20CN1B	1.04	2.36	3.2909(11)	148

Symmetry transformations used to generate equivalent atoms:

^{*i*} 1-x,-1/2+y+1,1/2-z ^{*ii*} -x,1/2+y,1/2-z

Figure S2 - View of the hydrogen bonds for compound HL^2 . Donor and acceptor atoms are identified. Blue, light-blue and green dashed lines represent the O–H···O, N–H···N and N–H···O hydrogen bonds, respectively. All the hydrogen atoms, except those involved in the interactions, were omitted for clarity.

ESI2 – Calculated vs. experimental IR frequencies

Figure S3 – Calculated *vs.* experimental IR frequencies (cm⁻¹) for HL¹, HL³ and HL² derived complexes. The scale factor of 0.88 compares well with a value of 0.9 for the CPHF methodology at the NIST-Computational Chemistry Comparison and Benchmark DataBase.

ESI 3 – Spectroscopic Characterization

Figure S4 – Infra-red spectra of HL² and its Cu(II), VO(IV) and Zn(II) complexes obtained as KBr pellets.

Figure S5 – UV-Vis spectra of the compounds in DMSO. Concentration ca. 20-30µM.

The ¹H NMR, ¹³C NMR APT (Attached-Proton-Test), homonuclear Correlation Spectroscopy (¹H-¹H COSY), Heteronuclear Single Quantum Coherence (HSQC) and Heteronuclear Multiple Bonds Coherence (HMBC) were used to assign the NMR peaks to the ligands' atoms shown (Table S3).

Table S3 – Chemical shifts (ppm) in DMSO- d_6 using TMS as internal reference for proton and carbon atoms in HL¹, HL² and HL³ structures using the labeling presented in the Figure below, as well as for the Zn-complexes.

	L1		$Zn(L^{1})_{2}(7)$ L^{2}		L ²	Zn(L ²) ₂ (8) ^b		L ³		$Zn(L^{3})_{2}(9)$		
	Н	С	Н	С	Н	C	н	С	Н	С	Н	С
1	_	126.75	_	126.72	_	149.29	-	148.97	_	139.05	_	139.54
2	6.54	113.97	7.03	120.03	6.97	114.09	7.07	114.33	7.17	128.44	7.16	128.36
3	6.17	109.36	6.39	110.96	6.66	112.33	6.58	112.01	7.51	131.59	7.35	123.96
4	6.95	123.77	7.31	125.41	8.35	138.18	8.4	140.61	7.71	129.54	7.54	131.7
5	8.30	141.70	8.70	148.17	7.88	145.48	7.64	145.55	8.67	143.72	8.65	143.88
6	_	163.49	_	167.20		163.69	_	а	1	163.76	_	164.11
7	_	119.93	_	120.36		120.48	—	а	1	120.68	—	121
8	_	154.49	_	155.98		153.99	_	154.87		154.19	_	154.7
9	7.31	110.56	7.29	110.23	7.36	123.83	7.3	123.15	7.32	110.76	7.29	110.78
10	_	135.79	—	135.75		135.83	_	136.66		136.02	—	136.34
11	7.76	125.84	7.74	125.84	7.75	125.80	7.69	125.65	7.36	124.03	7.79	126
12	7.51	128.17	7.45	127.72	7.51	128.25	7.46	128.14	7.91	128.18	7.89	128.4
13	7.36	122.93	7.29	123.27	7.32	110.55	7.25	110	7.76	126.11	7.79	129.58
14	7.91	128.64	7.82	128.9	7.90	128.68	7.84	128.33	7.51	128.91	7.47	128.88
15	_	126.68	—	126.72	-	126.75	—	118.84	-	127.00	—	126.88
16	8.46	129.83	8.48	129.53	8.42	130.23	8.55	130	8.41	130.38	8.42	130.61
ОН	11.48	—	13.34	—	11.92	_		—	11.25	_		—
NH	11.74	_	_	—	11.26	—		—	11.93	—		_
NH _{pyrrole}	11.61	—	12.6	—	_	_	_	—	_	_	_	_

^a not detected within the concentrations used

^b measured in MeOD

Figure S6 – A) HMBC correlation spectrum of $Zn(L^2)_2$, **8**, in MeOH- d_4 and B) HMBC correlation spectrum of $Zn(L^3)_2$, **9**, in DMSO- d_6 . Chemical shifts in ppm using TMS as internal reference.

Figure S7 – ¹H NMR (A) and ¹³C DEPT (Distortionless enhancement by polarization transfer) NMR (B) spectra of HL¹ in DMSO- d_6 (chemical shifts in ppm, using TMS as internal reference).

Figure S8 – ¹H NMR (A) and ¹³C APT NMR (B) spectra of HL² in DMSO- d_6 (chemical shifts in ppm, using TMS as internal reference).

Figure S9 – ¹H NMR (A) and ¹³C APT NMR (B) spectra of HL^3 in DMSO- d_6 (chemical shifts in ppm, using TMS as internal reference).

Figure S10 – HMBC correlation spectrum of $Zn(L^1)_2$, **7**, in DMSO-*d*₆ (chemical shifts in ppm, using TMS as internal reference).

Figure S11 – (A) ¹H NMR spectrum of $Zn(L^2)_2$ **8**, in MeOH- d_4 (chemical shifts in ppm, using TMS as internal reference). It is noted the presence of *ca.* 20 % free ligand in solution. (B) ¹H NMR spectrum of $Zn(L^3)_2$ **9**, in DMSO- d_6 (chemical shifts in ppm, using TMS as internal reference). It is noted the presence of some free ligand in solution.

f

ESI 4 – Solution stability

Figure S12 - UV-Vis absorption spectra measured during 24h for solutions in PBS buffer (pH 7.4 at 20°C) containing 20 - 30 μ M of (a) **4** Cu(L¹)₂; (b) **5** Cu(L²)₂; (c) **6** Cu(L³)₂; (d) **1** VO(L¹)₂; (e) **2** VO(L²)₂; (f) **3** VO(L³)₂; (g) **7** Zn(L¹)₂; (h) **8** Zn(L²)₂; and (i) **9** Zn(L³)₂.

Figure S13 – ⁵¹V NMR spectra measured during 72 h for solutions in DMSO with 10% DMSO-d₆ containing 3.5 mM of (a) VO(L¹)₂; (b) VO(L²)₂; (c) VO(L³)₂.

ESI 5 – Theoretical Calculations

Figure S14 – TDDFT absorption (HL) and emission spectra. The band at 380 nm appears also in the experimental spectrum as a long Gaussian tail, absent in the simulated protonated species at the anionic geometry, see insert.

ESI 6 – Albumin binding

Figure S15 - Far-UV circular dichroism spectra measured for solutions containing BSA (*ca.* 1 μ M) and molar ratios of BSA:compound of 1 or 2 for HL² and HL³. MRE is the mean residue elipticity.

Compound	1:1	1:2
HL ¹	19	28
HL ²	12	16
HL ³	12	14
VO(L ¹) ₂ (1)	7	4
VO(L ²) ₂ (2)	4	4
VO(L ³) ₂ (3)	3	8
Cu(L ¹) ₂ (4)	2	2
Cu(L ²) ₂ (5)	3	3
Cu(L ³) ₂ (6)	5	5
Zn(L ¹) ₂ (7)	3	5
Zn(L ²) ₂ (8)	4	4
Zn(L ³) ₂ (9)	6	5

Table S4 – Increase in the α -helical content of BSA calculated with equation 2 (at 208 nm), for BSA:compound ratios of 1:1 or 1:2.

Figure S16 - UV absorption spectra measured for solutions containing BSA (*ca.* 3μ M) and molar ratios of compound:BSA from 0 to 4. A) HL¹, B) HL², C) HL³, D) **1**, E) **2** and F) **3**.

Figure S17 – Steady-state fluorescence quenching experiments for solutions containing BSA (*ca.* 1.5 μ M) and molar ratios of compound:BSA from 0 to 2 in 0.3% DMSO/ PBS aqueous buffer pH 7.4 after subtraction of blank emission spectra (arrows indicate the variation observed with increasing concentration of the compound). Insets: Stern-Volmer plots at emission maxima (I₀/I) obtained from the measurements (I₀/I data were corrected for inner-filter-effects). A) HL¹, B) **1**, C) **4**, D) **7**, E) HL², F) **2**, G) **5**, H) **8**, I) HL³, J) **6** and K) **9**.

Figure S18 – Stern-Volmer plots obtained from the measurements of time-resolved fluorescence quenching experiments (τ_0/τ) for solutions containing BSA (*ca.* 1.5 µM) and molar ratios of compound:BSA from 0 to 2 in 0.3% DMSO/ PBS aqueous buffer pH 7.4. A) HL¹, B) **1**, C) **4**, D) **7**, E) HL², F) **2**, G) **5**, H) **8**, I) HL³, J) **3**, K) **6** and L) **9**.

Table S5 - BSA fluorescence time-resolved quenching experimental results after analysis with the Stern-Volmer equations.

	K _{SV} (M ^{−1})				
HL ¹	4.78 × 10 ⁴				
1	6.12 × 10 ⁴				
4	3.68 × 10 ⁴				
7	6.05 × 10 ⁴				
HL ²	1.46 × 10 ⁵				
2	4.27 × 10 ⁵				
5	1.26 × 10 ⁵				
8	2.28 × 10 ⁵				
HL ³	1.32 × 10 ⁵				
3	2.00 × 10 ⁵				
6	2.17 × 10 ⁵				
9	3.22×10^{6}				

Figure S19 – **(A)** Superimposed chains of Bovine Serum Albumin and Human Serum Albumin. BSA (PDB-ID:4JK4-A) is represented in green and HSA (PDB-ID:3LU6-A) represented in blue. **(B)** Zoom of binding site I, of sub-domain IIA for BSA (green) and HSA (blue), superimposed. The amino acids represented in sticks are the most relevant for interactions with the ligands.

HL¹- **j**. amino acid interaction of HL¹ inside the pocket. It is observed a stacking with Trp 213; **k**. surface view of 3LU6 binding pocket, with most important amino acid highlighted and HL¹ pose; **I**. 2D depiction of interactions of HL¹ inside HSA pocket.

HL²- m. amino acid interaction of HL² inside the pocket. It is observed a stacking with Trp 213; **n.** surface view of 3LU6 binding pocket, with most important amino acid highlighted and HL² pose (more similar with L³ pose); **o.** 2D depiction of interactions of HL² inside HSA pocket.

HL³- p. amino acid interaction of HL³ inside the pocket. It is observed a stacking with Trp 213; **q.** surface view of 3LU6 binding pocket, with most important amino acid highlighted and HL³ pose; **r.** 2D depiction of interactions of HL³ inside HSA pocket.

	Score	RMSD
Chemplp	50.84	0.5
Goldscore	56.33	0.5

	AA		interaction	Distance	Ligand
		Crystal	Receptor exposure		
	Trp213	CHEMPLP	Receptor exposure		
		GOLD	Receptor exposure		
_		Crystal	H-acceptor	2.93; 3.67	0
	Arg194	CHEMPLP	H-acceptor ionic	2.95 2.95	0
		GOLD	H-acceptor ionic	2.59; 3.12; 3.16 2.59; 3.16; 3.76	0 0
ıphic Ligand		Crystal	H-acceptor ionic	3.21 2.43; 3.21; 3.45; 3.53	0 0
	Arg198	CHEMPLP	basic		
		GOLD	basic		
	Ser201	Crystal	H-donor	3.56	I
allogra		CHEMPLP	polar		
Crysta		GOLD	-	-	-
0		Crystal	-	-	-
	Ser214	CHEMPLP	H-donor	3.35	I
		GOLD	H-donor	3.12	I
		Crystal	H-acceptor ionic	3.36 3.36; 3.84; 3.97	0 0
	Arg217	CHEMPLP	H-acceptor	3.85	I
		GOLD	H-acceptor	3.95	Ι
		Crystal	H-donor	3.54	I
	Asp450	CHEMPLP	-	-	-
		GOLD	-	-	-

	Score	RMSD
Chemplp	99.19	1.4
Goldscore	74.71	1.3

	AA		interaction	Distance	Ligand
		Crystal	π-π	3.58	6-ring
	Trp214	CHEMPLP		3.78	6-ring
		GOLD	π-π	3.58	6-ring
aphic Ligand		Crystal	lonic π-H H-acceptor	3.19, 3.31 3.53; 3.79 3.19	O 5-ring; 6-ring O
	Lys199	CHEMPLP	lonic π-H H-acceptor	2.67; 2.74 3.61 2.67; 2.74	O 5-ring; 6-ring O
		GOLD	lonic π-H H-acceptor	2.60; 3.09 3.64; 3.86 2.60; 2.09	O 5-ring; 6-ring O
allogra		Crystal	Receptor exposure		
Crysta	Arg218	CHEMPLP	Receptor exposure		
		GOLD	Receptor exposure		
		Crystal	H-acceptor	3.04	0
	His242	CHEMPLP	H-acceptor	3.07	0
		GOLD	H-acceptor	2.85	0
		Crystal	π-Η	4.06	6-ring
	Ala291	CHEMPLP	π-Η	4.23	6-ring
		GOLD	-	-	-

Aminoacid		Interaction	Distance
T 04.0	HL ¹	π-π	3.33; 3.53; 3.71; 3.73
Trp213	HL ²		2.96; 3.31; 3.60
	HL ³		3.13; 3.20; 3.46
	HL ¹	Receptor exposure	-
Arg194	HL ²		2.84
	HL ³		2.76
	HL ¹	Basic	-
Arg198	HL ²	Receptor exposure, basic	-
	HL ³	H-acceptor	2.92
	HL ¹	H-donor	3.45
Ser201	HL ²	Polar	
	HL ³	FUIdi	-
	HL ¹	Lipophilic	-
Ala209	HL ²	-	-
	HL ³	-	-
	HL ¹	_	-
Leu210	HL ²	Lipophilic	-
	HL ³		-
	HL ¹	-	-
Arg217	HL ²	Pecentor exposure	-
	HL ³		-

Table S8 - Interactions between HL^1 , HL^2 and HL^3 with BSA- 4JK4.

Table S9- Interactions between L^1 , L^2 and L^3 with HSA- 3LU6

Aminoacid		Interaction	Distance
	HL ¹		3.79
Trp214	HL ²	π-π	3.75
	HL ³	-	3.49; 3.99
	HL ¹		-
Lys199	HL ²	π-H	3.83
	HL ³		3.96
	HL ¹		-
Arg218	HL ²	Receptor exposure	-
	HL ³		-
	HL ¹	π-H	4.19
Ala291	HL ²	- Pocontor ovposuro -	-
	HL ³	- Receptor exposure -	-
Arg222	HL ¹	Polar	-
	HL ²		-
	HL ³	π- cation	3.76

		Score	S(hb_ext)	S(vdw_ext)	S(hb_int)	S(int)	intcor
HL ¹	BSA	65.47	1.92	46.88	0.00	-0.91	-4.30
	HSA	62.66	6.04	41.63	0.00	-0.62	-4.30
HL ²	BSA	64.48	6.06	44.57	0.00	-2.87	-4.44
	HSA	65.37	11.35	40.33	0.00	-1.42	-4.43
HL ³	BSA	66.62	6.00	45.85	0.00	-2.43	-4.37
	HSA	64.73	5.88	44.24	0.00	-1.97	-4.36
VO(L ²) ₂	BSA	61.66	0.00	44.96	0.00	-0.16	-3.42
	HSA	56.24	5.85	36.70	0.00	-0.08	-3.42
Cu(L ²) ₂	BSA	67.73	0.92	48.82	0.00	-0.32	-3.35
	HSA	68.61	0.00	50.27	0.00	-0.50	-3.35
$Zn(L^2)_2$	BSA	58.88	0.00	42.85	0.00	-0.04	-3.72
	HSA	71.46	4.25	49.58	0.00	-0.96	-3.72

Table S10 - Score values obtained with Goldscore fitness function for BSA (PDB-ID 4JK4) and HAS (PDB-ID 3UL6)

 Table S11 - Interactions between L² complexes and BSA- (PDB-ID 4JK4).

Aminoacid		Interaction	Distance
Trp213	$VO(L^2)_2$	Recentor exposure	
	Cu(L ₂) ₂		
	$Zn(L_2)_2$	-	
Arg194	$VO(L^2)_2$	Recentor exposure	
	Cu(L ₂) ₂		
	$Zn(L_2)_2$	-	
Lys294	$VO(L^2)_2$	-	
	Cu(L ₂) ₂	H-acceptor	3.16
	$Zn(L_2)_2$	Receptor exposure	
Pro338	$VO(L^2)_2$	-	
	Cu(L ₂) ₂	H-donor 2.56	
	$Zn(L_2)_2$	Receptor exposure	

Aminoacid		Interaction	Distance
Trp214	VO(L ²) ₂	π-π	3.58
	Cu(L ₂) ₂	π-π	3.11
	$Zn(L_2)_2$	-	
Lys 199	VO(L ²) ₂	π-Η	3.53
	$Cu(L_2)_2$	Ligand exposure	
	$Zn(L_2)_2$	Ligand exposure	
Arg 218	VO(L ²) ₂	-	
	Cu(L ₂) ₂	H- acceptor	3.48
	$Zn(L_2)_2$	-	
His 242	VO(L ²) ₂	H-acceptor	2.98; 3.04
	Cu(L ₂) ₂	-	
	Zn(L ₂) ₂	-	
Tyr 452	VO(L ²) ₂	-	
	Cu(L ₂) ₂	-	
	$Zn(L_2)_2$	π-π	3.4
Cys 488	VO(L ²) ₂		
	$Cu(L_2)_2$		
	$Zn(L_2)_2$	H-donor	3.32

Table S13 – Metal force-fields .2

Metal	Acceptor	Force]
V	N2DA	-10	•
V	O2A	-5	-
V	OCO2A	-15	-
V	N1A	-10	-
V	N3A	-10	-
V	O3A	-10	-
V	N2A	-10	-
V	N3DA	-10	-
V	O3DA	-1	-
V	NACIDA	-15	-
V	02NA	-1	-
V	0N02A	-10	-
V	SMIN	-20	-
V	SACC		-
V			-
V		_20	-
V		20	•
V		-20	
Cu	NZDA	-10	-
Cu	02A	-5	-
Cu	OCO2A	-15	-
Cu	N1A	-10	-
Cu	N3A	-10	-
Cu	O3A	-10	-
Cu	N2A	-10	-
Cu	N3DA	-10	-
Cu	O3DA	0	-
Cu	NACIDA	-15	-
Cu	O2NA	-1	-
Cu	ONO2A	-10	-
Cu	SMIN	-15	-
Cu	SACC	-15	_
Cu	NARA	-20	_
Cu	O3MINUSA	-20	
Cu	OMINUSA	-20]
Zn	N2DA	-10	
Zn	O2A	-5	-
Zn	OCO2A	-15	-
Zn	N1A	-10	-
Zn	N3A	-10	-
Zn	O3A	-10	-
Zn	N2A	-10	-
Zn	N3DA	-10	-
Zn	O3DA	0	-
Zn	NACIDA	-15	-
Zn	O2NA	-1	-
Zn	 		
Zn	SMIN		
Z n	SACC		-
7 n	ΝΔΡΔ		-
7 n			-
7 n		.20	Toxicity
_		-20	-

ESI7 –

Figure S21 – General toxicity of the compounds, at 0.1 mg/mL using the *Artemia salina* assay.

References

- 1. F. H. Allen, Acta Crystallogr B, 2002, 58, 380-388.
- 2. G. Sciortino, J. Rodriguez-Guerra Pedregal, A. Lledos, E. Garribba, J.-D. Marechal., J. Comput. Chem. 2017, DOI: 10.1002/jcc.2508