Supporting Information for

Aluminium complex-catalysed hydroboration of alkenes and alkynes

Adimulam Harinath,^a Indrani Banerjee,^a Jayeeta Bhattacharjee^a and Tarun K. Panda*^a

Table of contents

Table TS1. Crystallographic data and refinement parameters of 1. FS1.¹H NMR spectrum (400 MHz, 25° C, C₆D₆) of complex 1. **FS2.**¹¹B NMR spectrum (128.4 MHz, 25° C, C₆D₆) of complex 1. **FS3.**¹³C NMR spectrum (100 MHz, 25° C, C₆D₆) of complex 1. **FS4.**¹H NMR spectrum (400 MHz, 25° C, CDCl₃) of **2a**. FS5.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of 2a. **FS6.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of **2a**. FS7.¹H NMR spectrum (400 MHz, 25° C, CDCl₃) of **2b**. **FS8.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2b**. **FS9.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of **2b. FS10.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **2c**. **FS11.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2c. FS12.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of **2c. FS13.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of 2d. **FS14.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2d**. **FS15.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of **2d. FS16.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **2e**. **FS17.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2e**. **FS18.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of **2e**. FS19.¹H NMR spectrum (400 MHz, 25° C, CDCl₃) of 2f. **FS20.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2f**. FS21.¹³C NMR spectrum (100 MHz, 25° C, CDCl₃) of 2f.

FS22.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of 2g. FS23.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of 2g. **FS24.**¹⁹F NMR spectrum (376.5 MHz, 25°C, CDCl₃) of **2g**. FS25.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of 2g. **FS26.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **2h**. **FS27.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2h**. **FS28.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of **2h**. **FS29.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **2i**. **FS30.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2i**. **FS31.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of **2i**. **FS32.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **2**j. **FS33.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2**j. **FS34.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of 2j. **FS35.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **2k**. **FS36.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2k**. **FS37.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **2k**. **FS38.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **21**. **FS39.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **21**. **FS40.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **21**. **FS41.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **2m**. **FS42.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2m**. FS43.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of 2m. **FS44.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **2n**. **FS45.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2n**. **FS46.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **2n**. **FS47.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **20**. **FS48.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **20. FS49.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **20. FS50.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **2p**. **FS51.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **2p**.

FS52.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **2p**. **FS53.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3a**. FS54.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of 3a. FS55.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of 3a. **FS56.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3b**. **FS57.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **3b**. FS58.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of 3b. **FS59.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3c. FS60.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **3c.** FS61.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of 3c. **FS62.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3d**. **FS63.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **3d**. FS64.¹³C NMR spectrum (100 MHz, 25° C, CDCl₃ of 3d. **FS65.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3e**. **FS66.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **3e**. FS67.¹³C NMR spectrum (100 MHz, 25° C, CDCl₃ of **3e**. **FS68.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3f**. **FS69.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **3f**. **FS70.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **3f**. **FS71.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3g**. **FS72.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **3g.** FS73.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of 3g. **FS74.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3h. FS75.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **3h. FS76.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **3h**. **FS77.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3i**. **FS78.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **3i**. **FS79.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **3i**. **FS80.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3**j. **FS81.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **3**j.

FS82.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **3**j. FS83.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **3**k. FS84.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of **3**k. FS85.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **3**k. FS86.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of **4**a. FS87.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **4**a. FS88.¹H NMR spectrum (100 MHz, 25°C, CDCl₃ of **4**b. FS89.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of **4**b.

Crystal Parameters	1 (exp-6202)
CCDC No.	1909428
Empirical formula	$C_{20}H_{22}N_2PSeAl$
Formula weight	427.30
<i>T</i> (K)	150(2) K
λ (Å)	1.54184
Crystal system	Monoclinic
Space group	<i>P 21/</i> n
<i>a</i> (Å)	9.5906(10)
<i>b</i> (Å)	13.1698(2)
<i>c</i> (Å)	16.0726(2)
α (°)	90
β(°)	103.371(2)
γ (°)	90
$V(Å^3)$	1975.04(5)
Z	4
$D_{\rm calc}~{ m g~cm^{-3}}$	1.437
$\mu ({\rm mm}^{-1})$	3.799
<i>F</i> (000)	872
Theta range for data collection	4.389 to 71.407 deg
Limiting indices	$-11 \le h \le 11$,
-	$-14 \le k \le 16$,
	$-16 \le l \le 19$
Reflections collected /	7011/3573
unique	[R(int) = 0.0177]
Comulaton aga ta thata	00.7.8/
Completeness to theta	¥¥./ %0
Absorption correction	Multi-scan

Table TS1. Crystallographic data and refinement parameters of 1.

Max. and min. transmission	1.00000 and 0.54170
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3753 / 0 / 229
Goodness-of-fit on F ²	1.037
Final R indices [I>2sigma(I)] R indices (all data)	R1 = 0.0311 wR2 = 0.0840 R1 = 0.0331 wR2 = 0.0858
Largest diff. peak and hole	$0.361 \text{ and } -0.553 \text{ e.Å}^{-3}$

Figure FS1. ¹H NMR spectrum (400 MHz, 25°C, C₆D₆) of complex 1.

Figure FS2. ${}^{31}P{}^{1}H$ NMR spectrum (161.9 MHz, 25°C, C₆D₆) of complex 1.

Figure FS3 ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, 25°C, C₆D₆) of complex 1.

General procedure for the synthesis of compounds (2a-2s and 3a-3m).

Catalyst 1 (1 mol%), alkenes (2a-2p) or alkynes (3a-3k) 0.5 mmol and respective boranes such as pinacolborane/ catecholborane (0.6 mmol) were placed in a 25 mL Schlenk flask equipped with a magnetic stir bar inside the glove box. Then the reaction mixture was stirred at 30°C for eight hours The progress of reaction was monitored by ¹H NMR spectroscopy using hexamethylbenzene (10 mol%) as an internal standard. After the reaction was completed, the resulted boronate ester product was separated by silica-gel column chromatography using hexane as an eluent. Removal of solvent under reduced pressure provided pure products for further analysis. For alkynes hydroboration was carried out in 0.5 ml toluene.

Characterization Data

4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane (2a).¹

Yield: [Mass in 232.13 mg (100%), Mass out 227.48 mg (98%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.26 - 7.20 (m, 4H, Ar-*H*), 7.16 - 7.11 (m, 1H, Ar-*H*), 2.74 (t, *J* = 8.0 Hz, 2H, C*H*₂), 1.21 (s, 12H, C*H*₃), 1.14 (t, *J* = 8.0 Hz, 2H, C*H*₂) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 144.3, 128.1, 127.9, 125.4, 83.0, 29.9, 24.7 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.8 ppm

4,4,5,5-tetramethyl-2-(4-methylphenethyl)-1,3,2-dioxaborolane (2b).¹

Yield: [Mass in 246.15 mg (100%), Mass out 221.53 mg (90%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.15 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 7.11 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 2.76 (t, *J* = 8.0 Hz, 2H, CH₂), 2.35 (s, 3H, CH₃), 1.27 (s, 12H, CH₃), 1.17 (t, *J* = 8.0 Hz, 2H, CH₂) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ_C 141.3, 134.7, 128.8, 127.8, 83.0, 29.4, 24.7, 20.9 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ_B 34.0 ppm

2-(4-methoxyphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2c).¹

Yield: [Mass in 262.15 mg (100%), Mass out 228.07 mg (87%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.15 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 6.82 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 3.78 (s, 3H, CH₃), 2.71 (t, *J* = 8.0 Hz, 2H, CH₂), 1.23 (s, 12H, CH₃), 1.13 (t, *J* = 8.0 Hz, 2H, CH₂) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 157.5, 136.4, 128.8, 113.5, 82.9, 55.1, 29.0, 24.7 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.9 ppm.

2-(4-(tert-butyl)phenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d).²

Yield: [Mass in 288.23 mg (100%), Mass out 244.99 mg (85%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.32 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 7.19 (d, *J* = 8.0 Hz, 2H, Ar-*H*), 2.76 (t, *J* = 8.0 Hz, 2H, CH₂), 1.34 (s, 9H, C(CH₃)₃), 1.26 (s, 12H, CH₃), 1.18 (t, *J* = 8.0 Hz, 2H, CH₂) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 148.1, 141.3, 127.6, 125.0, 83.0, 34.2, 31.4, 29.3, 24.7 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.1 ppm.

2-(4-fluorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d).²

Yield: [Mass in 250.12 mg (100%), Mass out 212.60 mg (85%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.18 - 7.15 (m, 2H, Ar-*H*), 6.94 (t, *J* = 8.0 Hz, 2H, Ar-*H*), 2.72 (t, *J* = 8.0 Hz, 2H, C*H*₂), 1.21 (s, 12H, C*H*₃), 1.12 (t, *J* = 8.0 Hz, 2H, C*H*₂) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 162.3, 159.8, 139.9, 129.3 (d, *J* = 7.0 Hz), 114.8 (d, *J* = 20.0 Hz), 83.1, 29.1, 24.7 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.5 ppm

2-(4-Bromophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e).³

Yield: [Mass in 311.02 mg (100%), Mass out 267.47 mg (86%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.37 (d, J = 8.0 Hz, 2H, Ar-H), 7.09 (d, J = 8.0 Hz, 2H, Ar-H), 2.70 (t, J = 8.0 Hz, 2H, C H_2), 1.22 (s, 12H, C H_3), 1.11 (t, J = 8.0 Hz, 2H, C H_2) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 143.3, 131.1, 129.8, 119.1, 83.1, 29.3, 24.7 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.0 ppm.

4,4,5,5-tetramethyl-2-(2-(perfluorophenyl)ethyl)-1,3,2-dioxaborolane (2f).¹

Yield: [Mass in 332.08 mg (100%), Mass out 265.66 mg (80%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 2.80 - 2.75 (m, 2H, CH₂), 1.22 (s, 12H, CH₃), 1.11 - 1.06 (m, 2H, CH₂) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 146.2 - 146.0 (m, CF), 143.7-143.6 (m, CF), 140.5 - 140.4 (m, CF), 138.5 - 138.0 (m, CF), 127.3 - 116.9 (m, CF), 83.4, 24.7, 16.9 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.2 ppm

2-(3-cyclohexylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Yield: [Mass in 252.20 mg (100%), Mass out 214.37 mg (85%)] : $\delta_{\rm H}$ 1.69 - 1.63 (m, 6H, CH₂), 1.41 - 1.37 (m, 2H, CH₂), 1.22 (s, 12H, CH₃), 1.17 - 1.12 (m, 5H, CH₂), 0.88 - 0.81 (m, 2H, CH₂), 0.72 (t, *J* = 8.0 Hz, 2H, CH₂) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 82.7, 40.4, 37.4, 33.3, 26.7, 26.4, 24.7, 21.2 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.1 ppm.

2-(2-cyclohexylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(2h).²

Yield: [Mass in 238.17 mg (100%), Mass out 197.68 mg (83%)]: $\delta_{\rm H}$ 1.69 - 1.59 (m, 4H, CH₂), 1.43 - 1.35 (m, 1H, CH), 1.22 (s, 12H, CH₃), 1.17 - 1.12 (m, 4H, CH₂), 0.88 - 0.81 (m, **2**H, CH₂), 0.72 (t, J = 8.0 Hz, 2H, CH₂) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 82.7, 40.4, 37.4, 33.4, 26.5 (d, J = 33.0 Hz), 21.2 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.2 ppm.

2-(2-cyclopentylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2i).

Yield: [Mass in 224.15 mg (100%), Mass out 190.52 mg (85%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.74 - 1.65 (m, 3H, CH₂), 1.58 - 1.51 (m, 2H, CH₂), 1.49 - 1.44 (m, 1H, CH), 1.39 (q, *J* = 8.0 Hz, 2H, CH₂), 1.23 (s, 12H, CH₃), 1.10 - 1.03 (m, 2H, CH₂), 0.76 (t, *J* = 8.0 Hz, 2H, CH₂) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 82.8, 42.6, 32.3, 30.1, 25.2, 24.7 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.1 ppm

4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane (2j).

Yield: [Mass in 240.19 mg (100%), Mass out 216.17 mg (90%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.39 - 1.34 (m, 2H, CH₂), 1.27 - 1.24 (m, 10H, CH₂), 1.22 (s, 12H, CH₃), 0.85 (t, *J* = 8.0 Hz,

2H, CH₃), 0.74 (t, J = 8.0 Hz, 2H, CH₂) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 82.7, 32.4, 31.8, 29.3 (d, J = 13.0 Hz), 24.7, 23.9, 22.6, 14.0 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.1 ppm.

2-(5-bromopentyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2k).

Yield: [Mass in 277.01 mg (100%), Mass out 249.30 mg (90%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 3.40 (t, J = 8.0 Hz, 2H, CH_2), 1.85 (t, J = 8.0 Hz, 2H, CH_2), 1.45 - 1.41 (q, 4H, CH_2), 1.24 (s, 12H, CH_3), 0.78 (t, J = 8.0 Hz, 2H, CH_2) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 83.0 (d, J =15.0 Hz), 33.9, 32.6, 30.8, 24.7, 23.1 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.3 ppm.

2-(6-bromohexyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21)

Yield: [Mass in 291.03 mg (100%), Mass out 261.92 mg (90%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 3.38 (t, J = 8.0 Hz, 2H, CH_2), 1.87 - 1.80 (q, 2H, CH_2), 1.45 - 1.37 (m, 4H, CH_2), 1.33 - 1.28 (m, 2H, CH_2), 1.23 (s, 12H, CH_3), 0.76 (t, J = 8.0 Hz, 2H, CH_2) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 82.8, 33.9, 32.6, 31.3, 27.8, 24.7, 23.7 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.4 ppm.

2-(8-bromooctyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2m).

Yield: [Mass in 319.09 mg (100%), Mass out 280.79 mg (88%)]. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.37 (t, 2H), 1.84 - 1.80 (m, 2H), 1.39 - 1.36 (m, 4H), 1.29 – 1.27 (m, 6H), 1.22 (s, 12H), 0.74 (t, 2H) ppm. ¹³C(¹H) NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 82.7, 33.9, 32.7, 32.1, 29.0, 28.5, 28.0, 24.7, 23.8 ppm. ¹¹B(¹H) NMR (128 MHz, CDCl₃) $\delta_{\rm B}$ 34.0 ppm. 2-(2,3-dimethylbutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2n).

Yield: [Mass in 212.14 mg (100%), Mass out 190.92 mg (90%)]. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 71.58 - 1.53 (m, 1H), 1.47 – 1.42 (m, 1H), 1.22 (s, 12H), 0.83 - 0.78 (m, 10H), 0.61 – 0.55 (m, 1H) ppm. ¹³C(¹H) NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 82.7, 35.0, 34.1, 24.8, 24.6, 19.7, 18.6 ppm. ¹¹B(¹H) NMR (128 MHz, CDCl₃) $\delta_{\rm B}$ 34.3ppm.

4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)phenyl acetate (20).³

Yield: [Mass in 290.16 mg (100%), Mass out 261.14 mg (90%)]. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.21 (d, 2H), 6.96 (d, 2H), 2.74 (t, 2H), 2.27 (s, 3H), 1.21 (s, 12H), 1.13 (t, 2H) ppm. ¹³C(¹H) NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 169.6, 148.4, 141.8, 128.8, 121.0, 83.0, 29.2, 24.7, 21.0 ppm. ¹¹B(¹H) NMR (128 MHz, CDCl₃) $\delta_{\rm B}$ 34.2 ppm.

(E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane (3a).⁴

Yield: [Mass in 230.11 mg (100%), Mass out 227.8 mg (99%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.42 - 7.40 (m, 2H), 7.36, (d, 1H, *J* = 16 Hz), 7.25 - 7.20 (m, 3H), 6.10 (d, 1H, *J* = 16 Hz), 1.24 (s, 12H, CH₃, Bpin) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 148.0, 133.5, 131.7, 131.6, 128.5, 122.9, 83.4, 24.5 ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃): $\delta_{\rm B}$ 30.4 (C-Bpin) ppm.

(E)-4,4,5,5-tetramethyl-2-(4-methylstyryl)-1,3,2-dioxaborolane (3b).⁴

Yield: [Mass in 244.14 mg (100%), Mass out 239.3 mg (98%)]. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.42 - 7.37 (m, 3H), 7.15 (d, *J* = 8 Hz, 2H), 6.13 (d, *J* = 20.0 Hz, 1H), 2.35 (s, 3H), 1.32 (s, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 149.5, 138.9, 134.8, 132.0, 129.3,127.0, 83.2, 24.8, 21.3 ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃) $\delta_{\rm B}$ 29.9 ppm.

(E)-2-(4-methoxystyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c).⁴

Yield: [Mass in 260.2 mg (100%), Mass out 206 mg (82%)]. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.36 (d, J = 8 Hz, 2H), 7.33 (d, J = 20 Hz, 1H), 6.77 (d, J = 8 Hz, 2H), 5.95 (d, J = 20 Hz, 1H), 3.68 (s, 3H), 1.22 (s, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 160.3, 149.1, 133.5, 129.0, 128.4, 114.0, 83.2, 55.2, 24.8 ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃): $\delta_{\rm B}$ 29.9(C-Bpin) ppm.

(E)-2-(4-chlorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3e).⁴

Yield: [Mass in 309.1 mg (100%), Mass out 302.9 mg (98%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.48 - 7.44 (m, 2H, ArH), 7.36 (d, 1H, *J* = 20 Hz), 7.04 - 7.00 (m, 2H, ArH), 6.07 (d, 1H, *J* = 20 Hz), 1.31 (s, 12H, CH₃, Bpin) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 164.3, 161.9, 148.1, 133.7, 128.7, 115.6, 83.4, 24.8 ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃): $\delta_{\rm B}$ 29.7 (C-Bpin) ppm.

(E)-2-(4-bromostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3e).⁴

Yield: [Mass in 309.1 mg (100%), Mass out 302.9 mg (98%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.46 - 7.44 (m, 2H, ArH), 7.35 - 7.30 (m, 3H, ArH), 6.15 (d, 1H, *J* = 20 Hz), 1.31 (s, 12H, CH₃, Bpin) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 160.3, 149.1, 133.5, 129.0, 128.4, 113.9, 83.2, 24.8 ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃): $\delta_{\rm B}$ 29.8 (C-Bpin) ppm.

(E)-2-(2-cyclohexylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f).⁴

Yield: [Mass in 236.2 mg (100%), Mass out 229.11 mg (97%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 6.59 (dd, 1H, $J_{\rm HH}$ =12 Hz, 8 Hz), 5.38 (d, 1H, J =20 Hz), 2.03 - 2.01 (m, 1H), 1.75 - 1.71 (m, 6H), 1.27 (s, 12H, CH₃, Bpin) 1.25 - 1.03 (m, 4H), ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 159.8, 82.9, 43.2, 31.9, 26.1, 25.9, 24.7, 24.5 ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃): $\delta_{\rm B}$ 30.4 (C-Bpin) ppm.

(E)-2-(2-cyclopentylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3g).⁴

Yield: [Mass in 222.13 mg (100%), Mass out 211.02 mg (95%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 6.63 (dd, 1H, $J_{\rm HH}$ =12 Hz, 8 Hz), 5.42 (d, 1H, J = 20 Hz), 2.56 - 2.54 (m, 1H), 1.81 - 1.65(m, 6H), 1.59 - 1.39 (m, 2H), 1.23 (s, 12H, CH₃, Bpin) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 158.9, 82.9, 46.1, 32.3, 25.4, 24.7, 24.5 ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃): $\delta_{\rm B}$ 30.6 (C-Bpin) ppm.

(E)-4,4,5,5-tetramethyl-2-(2-(thiophen-3-yl)vinyl)-1,3,2-dioxaborolane (3h).⁴

Yield: [Mass in 236.14 mg (100%), Mass out 233.78 mg (99%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.305 (d, *J* =20, 1H), 7.28 – 7.27 (m, 2H, ArH), 7.24 – 7.24 (m, 1H, ArH), 5.93 (d, *J* = 20 Hz, 1H), 1.28 (s, 12H, CH₃, Bpin) ppm. ¹³C-{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 143.0, 141.1, 126.0, 124.9 83.2, 24.7ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃): $\delta_{\rm B}$ 29.6 (C-Bpin) ppm.

(E)-2-(5-chloropent-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2j).

The compound was isolated as a colourless oil. Yield: [Mass in 230.12 mg (100%), Mass out 227.82 mg (99%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 6.61 - 6.53 (m, 1H), 5.48 (d, 1H, *J* = 20 Hz), 3.52 (t, 2H, *J* = 8 Hz), 2.34 - 2.27 (m, 2H), 1.92 - 1.85 (m, 2H), 1.25 (s, 12H, CH₃, Bpin) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 152.0, 83.0, 44.2, 32.6, 30.9, 24.5 ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃): $\delta_{\rm B}$ 31.6 (C-Bpin) ppm.

(E)-trimethyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (3j).⁴

Yield: [Mass in 226.20 mg (100%), Mass out 205.9 mg (91%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 6.02 (d, *J*.=8 Hz, 1H), 5.84 (d, 4Hz, 1H), 1.27 (s, 12H, CH₃, Bpin), 0.07 (s, 9H, SiMe₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 157.8, 134.4, 83.0, 24.5, -1.88 ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃): $\delta_{\rm B}$ 30.9 (C-Bpin) ppm.

(E)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl acetate (3k).¹

Yield: [Mass in 288.15 mg (100%), Mass out 273.75 mg (95%)]. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.88 - 7.86 (m, 2H), 7.41 - 7.39 (m, 2H), 7.07 (d, J = 20 Hz, 1H), 6.15 (d, J = 16Hz, 1H) 3.77 (s, 3H, OCH₃), 1.18 (s, 12H, CH₃, Bpin) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 166.7, 148.1, 141.7, 129.9, 129.0, 126.8, 125.2, 83.5, 52.0, 24.8 ppm. ¹¹B{¹H} NMR (128.3 MHz, CDCl₃): $\delta_{\rm B}$ 29.5 (C-Bpin) ppm.

Figure FS4. ¹H NMR (400 MHz, CDCl₃) spectrum of 2a.

Figure FS6. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 2a.

Figure FS8. $^{11}B{}^{1}H{}$ NMR (128 MHz, CDCl₃) spectrum of **2b**.

Figure FS10. ¹H NMR (400 MHz, CDCl₃) spectrum of 2c.

Figure FS12. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 2c.

Figure FS14. ¹¹B{¹H} NMR (128 MHz, CDCl₃) spectrum of 2d.

Figure FS16. ¹H NMR (400 MHz, CDCl₃) spectrum of 2e.

Figure FS18. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 2e.

Figure FS20. ¹¹B{¹H} NMR (128 MHz, CDCl₃) spectrum of 2f.

Figure FS22. ¹H NMR (400 MHz, CDCl₃) spectrum of 2g.

Figure FS24. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) spectrum of 2g.

Figure FS28. $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of 2h.

Figure FS30. ¹¹B{¹H} NMR (128 MHz, CDCl₃) spectrum of 2i.

Figure FS32. ¹H NMR (400 MHz, CDCl₃) spectrum of 2j.

Figure FS34. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 2j.

Figure FS36. ¹¹B{¹H} NMR (128 MHz, CDCl₃) spectrum of 2k.

Figure FS38. ¹H NMR (400 MHz, CDCl₃) spectrum of 2l.

Figure FS40. $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of 21.

Figure FS42. ¹¹B{¹H} NMR (128 MHz, CDCl₃) spectrum of **2m.**

Figure FS44. ¹H NMR (400 MHz, CDCl₃) spectrum of 2n.

Figure FS46. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 2n.

Figure FS48. ¹¹B{¹H} NMR (128 MHz, CDCl₃) spectrum of 20.

Figure FS50. ¹H NMR (400 MHz, CDCl₃) spectrum of 2p.

Figure FS52. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 2p.

Figure FS54. ¹¹B{¹H} NMR (128 MHz, CDCl₃) spectrum of **3a**.

Figure FS56. ¹H NMR (400 MHz, CDCl₃) spectrum of 3b.

Figure FS58. $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of 3b.

Figure FS59. ¹H NMR (400 MHz, CDCl₃) spectrum of 3c.

ure FS60. $^{11}B{^{1}H}$ NMR (128 MHz, CDCl₃) spectrum of 3c.

Figure FS62. ¹H NMR (400 MHz, CDCl₃) spectrum of 3d.

Figure FS64. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 3d.

Figure FS66. ¹¹B{¹H} NMR (128 MHz, CDCl₃) spectrum of **3e**.

Figure FS69. ¹¹B{¹H} NMR (128 MHz, CDCl₃) spectrum of 3f.

Figure FS73. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 3g.

Figure FS75. ${}^{11}B{}^{1}H{}$ NMR (128 MHz, CDCl₃) spectrum of **3h**.

Figure FS77. ¹H NMR (400 MHz, CDCl₃) spectrum of 3i.

Figure FS80. ¹H NMR (400 MHz, CDCl₃) spectrum of 3j.

Figure FS82. $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) spectrum of 3j.

Figure FS84. ${}^{11}B{}^{1}H{}$ NMR (128 MHz, CDCl₃) spectrum of 3k.

Figure FS86. ¹H NMR (400 MHz, CDCl₃) spectrum of 4a.

Figure FS90. ³¹P{¹H} NMR spectrum (161.9 MHz, 25°C, C₆D₆) reaction mixture

Reference:

- 1. S. Kisan, V. Krishnakumar and C. Gunanathan, ACS Catal. 2017, 7, 5950-5954.
- 2. A. Bismuto, M. J. Cowley and S. P. Thomas, ACS Catal. 2018, 8, 2001-2005.
- 3. G. Zhang, H. Zeng, J. Wu, Z. Yin, S. Zheng, and J. C. Fettinger. *Angew. Chem. Int. Ed.* 2016, **55**, 14369–14372.
- 4. S. Mandal, P. K. Verma and K. Geetharani, Chem. Commun., 2018, 54, 13690-13693.