New method for in situ assay of α -glucosidase activity and the inhibitor

screening through enzyme substrate mediated DNA hybridization

chain reaction

Xiquan Yue^{a#}, Lihong Su^{a#}, Xu Chen^a, Junfeng Liu^b, Longpo Zheng^{b*}, Juan Zhang^{a,*}

^a Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China

^b Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China

1 Experimental section

1.1 DNA sequences

Table S1 DNA sequences designed in the experiment

Name	Sequences
CPBA-IC	5'-TTAACCCACGCCGAATCCTAGACTCAAAGT-Amidophenylboronic acid-3'
H1	5'-TTAACCCACGCCGAATCCTAGACTCAAAGTAGTCTAGGATTCGGCGTG-3'
H2	5'-AGTCTAGGATTCGGCGTGGGTTAACACGCCGAATCCTAGACTACTTTG-3'

1.2 Recovery experiment

For recovery experiment, α -Glu at different concentrations were added into serum to give samples. Enzyme concentrations in the obtained serum samples were determined by using the established method and recovery ratios were calculated.

2 Results and discussions

2.1 Optimization of experimental conditions

[#]Two authors contributed equally.

^{*}Corresponding author.Fax/Phone: +86-21-66307046 (L Zheng); +86-21-66137037 (J Zhang); Email: <u>trauma_zlp@163.com</u> (L Zheng); <u>juanzhang@shu.edu.cn</u> (J Zhang)

Figure S1 The fluorescence intensities versus (A) pH values for CPBA-IC binding with AMNSspAPG, the time for (B) CPBA-IC binding with pAPG/AMNSs, (C) HCR, and (D) SGI dying. Columns with different letters are significantly different ($p \le 0.05$).

The extent of formation of boronate ester is crucial for HCR around AMNSs-pAPG and fluorescence signal output. To improve the performance of the established method, the experiment conditions including pH values and time for the binding of CPBA-IC with AMNSs-pAPG have been optimized. The optimal pH value and time are 9.4 and 8 min, respectively (Figure S1 (A) and (B)). Furthermore, time for HCR and SGI dying also influence the performance of the method. 1.2 h and 10 min have been separately chosen as optimal time for HCR and SGI dying in our study.

2.2 Recovery experiment

Table S2 α -Glu concentrations detected and the comparison with the given concentrations

in serum samples.					
Samples	α-Glu	Standard	Recovery	Relative	
	concentrations	concentrations	ratio (%)	error (%)	
	detected (U/mL)	(U/mL)			
1	0.45	0.5	90.1	3.5	
2	0.57	0.6	95.3	2.1	
3	0.67	0.7	95.7	3.8	
4	0.77	0.8	96.2	3.6	
5	0.99	0.9	110.1	2.8	
6	1.10	1.0	110.1	2.6	

We further verify the applicability of the established method in complicated samples with the usage of serum as complex matrix. The different amounts of α -Glu were added into bovine serum and the concentrations were further analyzed through our method. As illustrated in Table S2, the recovery ratios are 90% ~ 110% with the relative error within 4%. These results well signify the constructed method can be applied for enzyme activity analysis in complex matrix.

2.3 Detection of inhibitors at cellular level

Figure S2 (A) Fluorescence intensities with the addition of various concentrations of GA (1, 5, 20, 35, 50, 70 and 100 μ m) into Caco-2 cell. (B) Fluorescence intensities with the addition of various concentrations of Que (0.05, 0.1, 0.2, 0.5, 1, 5 and 10 μ M) into Caco-2 cell.