Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Tetracyanobutadiene (TCBD) functionalized benzothiadiazole derivatives: effect of donor strength on the [2+2] cycloaddition-retroelectrocyclization reaction

Yogajivan Rout, Shaikh M. Mobin and Rajneesh Misra*

Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India

rajneeshmisra@iiti.ac.in

Table of Contents

I.	Copies	of	¹ H	NMR,	¹³ C	NMR	spectra	and	HRMS	for	BTDs	2a–2g
••••		• • • • •	••••	• • • • • • • • • • •	••••		• • • • • • • • • • • • •	•••••	• • • • • • • • • • • •	••••	••••••	·····§3
II.	Electroc	hen	nical	l Data…	• • • • • •	• • • • • • • • • •	•••••	• • • • • • •	•••••		• • • • • • • • • •	····S24
III	. Therma	al P	rope	erties····	••••	• • • • • • • • • •	• • • • • • • • • • •	•••••		••••	•••••	····S25
IV	. Crystall	logr	aph	ic data [.]	••••	•••••	••••••	•••••	•••••	• • • • • •	•••••	···· S26
IV	. Theoret	tical	cal	culation	IS ····	•••••	•••••	• • • • • • •	•••••	••••	•••••	····S29

I. Copies of ¹H NMR, ¹³C NMR spectra and HRMS of 2a–2g

Figure S1. ¹H NMR spectrum of BTD 2a

Figure S2. ¹H NMR spectrum of BTD 2b

Figure S3. ¹H NMR spectrum of BTD 2c

Figure S4. ¹H NMR spectrum of BTD 2d

Figure S5. ¹H NMR spectrum of BTD 2e

RM-YR-376.001.001.1r.esp

Figure S6. ¹H NMR spectrum of BTD 2f

spectrum of **BTD 2g**

 $NC \xrightarrow{CN N} S N \xrightarrow{S} N$ $Fe \xrightarrow{CN 9} V$

Figure S7. ¹H NMR

Figure S8. ¹³C NMR of 2a

RM-YR-346B.001.001.1r.esp

Figure S9. ¹³C NMR of 2b

Figure S10. ¹³C NMR of 2c

Figure S11. ¹³C NMR of 2d

RM-YR-204-20.001.esp

Figure S13. ¹³C NMR of 2f

100 90 80 7 Chemical Shift (ppm) Π 130 120

Figure S14. ¹³C

NMR of 2g

Figure S15. HRMS of 2a

Figure S16. HRMS of 2b

Figure S17. HRMS of 2c

Figure S18. HRMS of 2d

Figure S19. HRMS of 2e

Figure S20. HRMS of 2f

Figure S21. HRMS of 2g

Figure S22. Cyclic voltammograms of BTD **2a**, **2b**, **2d**, **2e**, **2g** and **2f** at 0.1 M concentration of TBAPF₆ in dichloromethane recorded at a scan rate of 100 mV s⁻¹.

Figure S23. Thermogravimetric analysis (TGA) of benzothiazoles **2f and 2g** measured at a heating rate of 10 °C min⁻¹ under a nitrogen atmosphere.

Identification code	Ligand 1		
Empirical formula	C ₄₄ H ₃₄ FeN ₆ S		
Mr	734.68		
crystal system	Monoclinic		
space group	$P 2_1/c$		
a(Å)	18.9402(4)		
$b(\text{\AA})$	8.5785(2)		
$c(\text{\AA})$	23.1650(6)		
α (deg)	90		
β (deg)	90.691(2)		
γ (deg)	90		
Volume (Å ³⁾	3763.54(15)		
Z	4		
<i>Dx</i> (Mg m ⁻³)	1.297		
F(000)	1528		
μ (mm ⁻¹)	4.037		
θ range for data collection(deg)	3.81 to 71.48		
	-23<=h<=22,		
Limiting indices	$-6 \le k \le 10$,		
	-28<=I<=27		
Reflections collected	23712		
unique reflections	7236		
R(int)	0.0747		
Completeness to θ	99.6		
Data / restraints / parameters	7236 / 0 / 471		
GOF on F^2	0.915		

Table S1. Crystal data and structure refinement for BTD 2c

<i>R</i> 1 and <i>R</i> 2 [$I > 2\sigma(I)$]	R1 = 0.0607, wR2 =0.1706
R1 and R2 (all data)	R1=0.0770, wR2 =0.1993
Largest diff. peak and hole(e.A ⁻³)	0.519 and -0.479

Table S2. Selected bond length and bond angle of BTD 2c

Bond lengths [A] and angles [deg]

	Bond Length
Fe(1)-C(30)	2.030(3)
Fe(1)-C(35)	2.035(4)
Fe(1)-C(37)	2.039(4)
Fe(1)-C(36)	2.032(4)
Fe(1)-C(31)	2.045(3)
Fe(1)-C(29)	2.050(3)
Fe(1)-C(33)	2.050(3)
Fe(1)-C(34)	2.057(4)
Fe(1)-C(38)	2.053(4)
Fe(1)-C(32)	2.067(3)

Bond Angles

C(30)-Fe(1)-C(35)	107.33(17)
C(30)-Fe(1)-C(37)	162.08(17)
C(35)-Fe(1)-C(37)	67.5(2)
C(30)-Fe(1)-C(36)	125.91(19)
C(35)-Fe(1)-C(36)	41.4(2)
C(37)-Fe(1)-C(36)	39.0(2)
C(30)-Fe(1)-C(31)	40.58(13)

C(35)-Fe(1)-C(31)	115.9(2)
C(37)-Fe(1)-C(31)	124.65(16)
C(36)-Fe(1)-C(31)	104.32(16)
C(30)-Fe(1)-C(29)	41.43(12)
C(35)-Fe(1)-C(29)	130.23(18)
C(37)-Fe(1)-C(29)	154.42(17)
C(36)-Fe(1)-C(29)	166.58(18)
C(31)-Fe(1)-C(29)	68.50(13)

Crystallographic data

A single crystal X-ray structural study of BTD **2c** was performed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Data were collected at 150(2) K using graphitemonochromated Mo K α radiation ($\lambda \alpha = 0.71073$ Å). The strategy for the Data collection was evaluated by using the CrysAlisPro CCD software. The data were collected by the standard 'phi-omega scan techniques, and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97, and refined by full matrix least-squares with SHELXL-97, refining on F2. The positions of all the atoms were obtained by direct methods. All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions, and refined with isotropic temperature factors, generally 1.2Ueq of their parent atoms. The CCDC number 1888906 contains the supplementary crystallographic data for BTD **2c**. These data can be obtained free of charge via www.ccdc.cam.ac.uk (or from the Cambridge Crystallographic Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

 Table S3. The molecular orbitals of BTDs 2a-2g estimated from DFT calculation.

BTD	НОМО	LUMO
2a	૾ૢ૽ૼ૽ૣ૾ૺ૾૾૱ૢૺ	
2b		
2c		
2d		
2e		
2f		A CONTRACTOR
2g		

Figure S24. Energy levels diagram of the frontier orbitals of BTDs **2b–2f** estimated by DFT calculations.

Table S4. The molecular orbitals of BTDs 2a–2g estimated from DFT calculation.

2a	2b	
НОМО-2	НОМО-6	
HOMO-1	НОМО-2	૾ૺૼૢ૽ૢૢૢૢૢૢ૽ૺ૱ૼૣૺૼ૾
LUMO+1	LUMO	
2c	2d	
HOMO-1	НОМО	
LUMO	LUMO	
LUMO+1	LUMO+1	
20	2f	
НОМО	HOMO-7	
LUMO	HOMO S32	

	LUMO	
	LUMO+2	

2g	
НОМО-2	
LUMO	
LUMO+1	

TD-DFT Calculation data

BTDs 2a–2g

Calculation method: B3LYP/6-31G (d, p) level

BTD 2a

Excitation energies and oscillator strengths:

Excitation energies and oscillator strengths: Excited state symmetry could not be determined. Excited State 1: Singlet-?Sym 1.6798 eV 738.10 nm f=0.0016 <S**2>=0.000 140 ->142 0.44409 140 ->143 0.39785 140 ->144 -0.19297 140 ->148 0.22057 140 ->149 -0.11623 141 ->147 -0.15443This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2078.94447851Copying the excited state density for this state as the 1-particle RhoCI density. Excited state symmetry could not be determined. Singlet-?Sym 1.7230 eV 719.60 nm Excited State 2: f=0.0107 <S**2>=0.000 140 ->147 0.13787 141 ->142 0.54372 141 ->143 0.30888 141 ->144 -0.13073 141 ->148 0.19787 141 ->149 -0.10810 Excited state symmetry could not be determined. Excited State 3: Singlet-?Sym 1.9622 eV 631.86 nm f=0.0021 <S**2>=0.000 140 ->147 -0.20430 141 ->142 0.44602 141 ->143 -0.32393 141 ->144 0.20131 141 ->148 -0.23113 141 ->149 0.12865 Excited state symmetry could not be determined. Excited State 4: Singlet-?Sym 2.0208 eV 613.53 nm f=0.0137 <S**2>=0.000 140 ->142 0.53414 140 ->143 -0.25037 140 ->144 0.17243 140 ->148 -0.18935 140 ->149 0.10851 141 ->143 -0.10165 141 ->147 0.18498

Excited state symmetry could not be determined.

Excited State 5: Singlet-?Sym 2.3017 eV 538.66 nm f=0.7272 <S**2>=0.000 139 ->142 0.70016 Excited state symmetry could not be determined. Excited State 6: Singlet-?Sym 2.3603 eV 525.30 nm f=0.0029 <S**2>=0.000 137 ->142 -0.14749 -0.25036 137 ->143 137 ->144 0.15657 137 ->148 -0.24373 137 ->149 0.13187 -0.10635 138 ->142 138 ->143 138 ->148 -0.15519 -0.11683 140 ->146 0.37917 -0.12954 140 ->147 141 ->143 141 ->147 -0.12048 Excited state symmetry could not be determined. Excited State 7: Singlet-?Sym 2.4710 eV 501.75 nm f=0.0004 <S**2>=0.000 137 ->147 -0.19231 138 ->147 -0.17166 140 ->143 0.28008 140 ->147 0.16507 141 ->143 -0.12566 141 ->146 -0.16773 141 ->147 0.49863 Excited state symmetry could not be determined. Excited State 8: Singlet-?Sym 2.6288 eV 471.64 nm f=0.0032 <S**2>=0.000 137 ->142 -0.11432 137 ->143 -0.14829 138 ->142 -0.29131 138 ->143 -0.12719 140 ->143 0.13817 140 ->147 -0.24523 0.40832 141 ->143 141 ->147 0.11164 141 ->148 -0.19173 Excited state symmetry could not be determined. Excited State 9: Singlet-?Sym 2.7612 eV 449.03 nm f=0.0181 <S**2>=0.000 138 ->142 0.61017 140 ->143 0.13937 141 ->143 0.17529 141 ->144 0.10357

Excited state symmetry could not be determined. Excited State 10: Singlet-?Sym 2.7982 eV 443.09 nm f=0.0186 <S**2>=0.000 137 ->147 0.25919 138 ->142 -0.11464 138 ->147 0.18141 139 ->143 0.15242 140 ->143 0.36689 140 ->144 0.20349 140 ->146 0.10779 140 ->148 -0.26693 140 ->149 0.14175 141 ->143 -0.15487 141 ->144 -0.11539 141 ->148 0.10548 Excited state symmetry could not be determined. Excited State 11: Singlet-?Sym 2.8277 eV 438.47 nm f=0.1928 <S**2>=0.000 139 ->143 0.68042 Excited state symmetry could not be determined. Excited State 12: Singlet-?Sym 2.9475 eV 420.64 nm f=0.0029 <S**2>=0.000 137 ->142 0.59892 140 ->147 0.16925 141 ->143 0.11264 141 ->144 0.24800 141 ->148 -0.10164 Excited state symmetry could not be determined. Excited State 13: Singlet-?Sym 3.0318 eV 408.95 nm f=0.0007 <S**2>=0.000 136 ->142 0.65753 136 ->143 0.11960 137 ->142 -0.12117 141 ->144 0.13837 Excited state symmetry could not be determined. Excited State 14: Singlet-?Sym 3.0752 eV 403.17 nm f=0.0014 <S**2>=0.000 136 ->142 -0.20931 -0.26543 137 ->142 137 ->143 0.15703 137 ->144 -0.10566 138 ->143 0.21023 140 ->147 0.20338 141 ->144 0.44407 Excited state symmetry could not be determined. Excited State 15: Singlet-?Sym 3.2014 eV 387.28 nm f=0.0005 <S**2>=0.000
137 ->147 -0.21288 138 ->147 -0.13503 140 ->144 0.58356 140 ->148 0.16755 141 ->144 -0.11119 141 ->147 -0.10129 Excited state symmetry could not be determined. Excited State 16: Singlet-?Sym 3.2718 eV 378.95 nm f=0.0023 <S**2>=0.000 135 ->142 0.70168 Excited state symmetry could not be determined. Excited State 17: Singlet-?Sym 3.3803 eV 366.78 nm f=0.0536 <s**2>=0.000 133 ->142 0.48505 134 ->142 0.24158 137 ->143 -0.10591 138 ->143 0.28173 139 ->144 -0.27341 Excited state symmetry could not be determined. Excited State 18: Singlet-?Sym 3.4008 eV 364.57 nm f=0.0390 <S**2>=0.000 133 ->142 0.28098 134 ->142 -0.26371 138 ->143 0.18788 139 ->144 0.53958 Excited state symmetry could not be determined. Excited State 19: Singlet-?Sym 3.4638 eV 357.94 nm f=0.0601 <S**2>=0.000 130 ->142 0.11569 134 ->142 0.26397 -0.25156 137 ->143 138 ->143 -0.14087 139 ->144 0.15160 140 ->147 -0.16428 140 ->148 0.12842 141 ->144 0.26644 141 ->146 -0.15384 141 ->148 0.30406 141 ->149 -0.16169 Excited state symmetry could not be determined. Excited State 20: Singlet-?Sym 3.4750 eV 356.79 nm f=0.0928 <S**2>=0.000 131 ->142 0.15652 133 ->142 -0.15514 134 ->142 0.51649 138 ->143 0.10860 139 ->144 0.29174

141 ->144 -0.12492 141 ->148 -0.13749 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 20 LETran= 370.

BTD 2b

Excitation energies and oscillator strengths: Excited State 1: Singlet-A 1.6862 eV 735.28 nm f=0.0027 <S**2>=0.000 147 ->150 0.43608 147 ->151 0.39233 147 ->152 -0.19101 147 ->156 0.21893 147 ->157 -0.11694148 ->155 -0.15484 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2193.47163012Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 1.7335 eV 715.21 nm f=0.0123 <S**2>=0.000 147 ->155 0.14344 148 ->150 0.52919 148 ->151 0.31561 -0.13664 148 ->152 148 ->156 0.20510 148 ->157 -0.11283 Excited State 3: Singlet-A 1.9909 eV 622.74 nm f=0.0120 <S**2>=0.000 147 ->155 -0.20413 148 ->150 0.46298 148 ->151 -0.31475 148 ->152 0.19598 148 ->156 -0.22468 148 ->157 0.12507 Excited State 4: Singlet-A 2.0331 eV 609.84 nm f=0.4417 <S**2>=0.000 0.30697 147 ->150 147 ->151 -0.19409 147 ->152 0.13218 147 ->156 -0.14493 148 ->155 0.13791 149 ->150 0.53976

Excited State	e 5:	Singlet-A	2.0727	eV	598.17	nm	f=0.3504
<s**2>=0.000</s**2>							
147 ->150)	0.44836					
147 ->151		-0.15624					
147 ->152		0.10854					
147 ->156		-0.12574					
148 ->155)	0.13968					
149 ->150)	-0.43969					
Excited State	6:	Singlet-A	2.3630	eV	524.68	nm	f=0.0033
<s**2>=0.000</s**2>		<u>j</u>					
144 ->150)	-0.15592					
144 ->151		-0.25112					
144 ->152)	0.15595					
144 ->154		0 10737					
144 ->156		-0 24163					
144 ->157	1	0.13279					
146 ->150	1	-0 10929					
146 -\151		-0 15939					
140 ->151		-0.15939					
140 ->150)	-0.14556					
147 ->104		-0.14000					
14/ ->155)	0.36482					
148 ->151		-0.12854					
148 ->155)	-0.11331					
Excited State	e 7:	Singlet-A	2.4773	eV	500.47	nm	f=0.0019
<s**2>=0.000</s**2>		2					
144 ->155)	-0.19559					
146 ->155		-0.17137					
147 ->151		0.26884					
147 ->155		0 16451					
148 ->151	, ,	-0 12206					
148 ->154		-0 20704					
148 ->155		0.20701					
140 /100	,	0.4/5//					
Excited State	e 8:	Singlet-A	2.5821	eV	480.17	nm	f=0.2078
<s**2>=0.000</s**2>							
149 ->151		0.69042					
Excited State	9:	Singlet-A	2.6460	eV	468.58	nm	f=0.0034
<s**2>=0.000</s**2>		2					
144 ->150)	-0.11891					
144 ->151		-0.14645					
146 ->150)	-0.29864					
146 ->151		-0.12580					
147 ->151		0.13764					
147 ->154		0.12093					
147 ->155		-0.24193					
148 ->151		0.40839					
148 ->155	-)	0.12525					
148 ->156		-0.17677					
00		· · · · · ·					

Excited <\$**2>=0.	State 000	10:	Singlet-A	2.7882	eV	444.68	nm	f=0.0178
146	->150		0.60036					
147	->151		0.15868					
148	->151		0.17540					
Excited	State	11:	Singlet-A	2.8183	eV	439.93	nm	f=0.0030
<s**2>=0.</s**2>	000							
144	->154		-0.10460					
144	->155		0.26140					
146 146	->150 ->155		-0.13906					
140	->151		0.16080					
147	->152		0.18996					
147	->154		0.12209					
147	->156		-0.26917					
147	->157		0.14473					
148	->151		-0.17119					
148	->152		-0.12133					
148	->156		0.10783					
Excited	State	12:	Singlet-A	2.9737	eV	416.94	nm	f=0.0029
<s**2>=0.</s**2>	000		0 50001					
144	->150		0.58301					
147 178	->155 ->151		0.12220					
140	->152		0.26516					
148	->156		-0.10705					
Excited	State	13:	Singlet-A	3.0403	eV	407.80	nm	f=0.0030
<5**2>=0.	->150		_0 17259					
145	->150		0.47258					
110	>100		0.47933					
Excited	State	14:	Singlet-A	3.1004	eV	399.89	nm	f=0.0022
144	->150		-0.30833					
144	->151		0.15013					
144	->152		-0.10433					
145	->150		0.14363					
146	->150		-0.10058					
146	->151		0.20348					
147	->155		0.19313					
148	->152		0.44296					
Excited	State	15:	Singlet-A	3.1277	eV	396.40	nm	f=0.0075
<5**2>=0.	UUU _\150		0 12110					
143 175	->150 ->150		0.43419 0.32792					
149	->152		-0.41729					

Excited	State	16:	Sing	let-A	3	.2006	eV	387.37	nm	f=0.2	1500
143	->150	0	.24826	5							
144	->155	-0	.10670)							
145	->150	0	.31389	9							
147	->152	0	.24568	3							
149	->152	0	.47620)							
Excited	State	17:	Sing	let-A	3	.2347	eV	383.30	nm	f=0.0	0626
<s**2>=0.</s**2>	.000			_							
144	->155	-0	.17440	C A							
145	->150	-0	.15914	± >							
140 147	->155 ->152	-0	.10953 53720	כ ו							
147	->156	0	1222	1							
147	->152	-0	25876	± S							
149	-/152	-0	.25070	5							
Excited	State	18:	Sing	let-A	3	.4044	eV	364.19	nm	f=0.0	0088
<pre><5 22=0. 141</pre>	->150	-0	19073	2							
142	->150	0	65666	5							
146	->151	-0	.11533	3							
	. 101	Ũ									
Excited	State	19:	Sing	let-A	3	.4075	eV	363.85	nm	f=0.0	0333
<s**2>=0.</s**2>	.000			_							
139	->150	-0	.14195	5							
141	->150	0	.52525								
142	->150	0	.24122	2							
144	->IJI \151	-0	.1UZ63	3							
140	->101	0	. 31144	±							
Excited	State	20:	Sing	let-A	3	.4777	eV	356.51	nm	f=0.0	0246
<\$**2>=0.	.000	0	4075	1							
139 130	->15U	0	.48/54	± >							
139	->151	-0	15/1/) 1							
144	->IJI -\151	0	1736	± >							
140	->1JI	0	1296/	<u>_</u> 1							
149	->152	- O	21400	<u>.</u>							
148	->154	0	.1302	7							
148	->156	-0	.2304	7							
148	->157	0	.12270)							
SavETr:	write	IOETrn=	770	NScale=	10	NData=	= 10	6 NLR=1	NSta	ite=	20
LETran=	370.										

BTD 2c

Excitation energies and oscillator strengths: Excited state symmetry could not be determined. Excited State 1: Singlet-?Sym 1.6722 eV 741.44 nm f=0.0025 <S**2>=0.000 159 ->162 0.41813 159 ->163 0.35732 159 ->164 -0.17449 159 ->168 0.18744 159 ->169 -0.12016 160 ->162 0.19546 160 ->163 0.15239 161 ->167 -0.14902 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2310.00545514Copying the excited state density for this state as the 1-particle RhoCI density. Excited state symmetry could not be determined. Excited State 2: Singlet-?Sym 1.7138 eV 723.44 nm f=0.0114 <S**2>=0.000 159 ->167 0.12208 161 ->162 0.55667 161 ->163 0.29686 161 ->164 -0.12569 161 ->168 0.17881 161 ->169 -0.12039 Excited state symmetry could not be determined. Singlet-?Sym 1.9684 eV 629.87 nm Excited State 3: f=0.0042 <S**2>=0.000 159 ->167 -0.19379 161 ->162 0.43012 161 ->163 -0.33376 161 ->164 0.20367 161 ->166 0.11099 161 ->168 -0.22215 161 ->169 0.14825 Excited state symmetry could not be determined. Excited State 4: Singlet-?Sym 2.0221 eV 613.16 nm f=0.0685 <S**2>=0.000 159 ->162 0.40946 159 ->163 -0.23927 159 ->164 0.16334 159 ->168 -0.16779 159 ->169 0.11503 160 ->162 0.33724 160 ->163 -0.10259

161 ->167 0.18700 Excited state symmetry could not be determined. Excited State 5: Singlet-?Sym 2.1105 eV 587.48 nm f=0.8279 <S**2>=0.000 159 ->162 -0.37650 160 ->162 0.58579 Excited state symmetry could not be determined. Singlet-?Sym 2.3600 eV 525.35 nm Excited State 6: f=0.0035 <S**2>=0.000 155 ->162 -0.15651 -0.24688 155 ->163 155 ->164 0.15490 155 ->166 0.10936 155 ->168 -0.22528 155 ->169 0.14815 157 ->162 -0.11624 157 ->163 -0.16072 157 ->168 -0.14468 159 ->166 -0.11006 159 ->167 0.34578 160 ->167 0.14028 -0.12765 161 ->163 161 ->167 -0.11339 Excited state symmetry could not be determined. Excited State 7: Singlet-?Sym 2.4717 eV 501.62 nm f=0.0008 <S**2>=0.000 155 ->167 -0.18880 157 ->167 -0.17156 159 ->163 0.25015 159 ->167 0.14668 160 ->163 0.12963 161 ->163 -0.12641 161 ->166 -0.17174 161 ->167 0.49348 Excited state symmetry could not be determined. Singlet-?Sym 2.6251 eV 472.30 nm Excited State 8: f=0.0029 <S**2>=0.000 155 ->162 -0.11109 155 ->163 -0.13521 157 ->162 -0.31674 157 ->163 -0.11813 159 ->163 0.12645 159 ->167 -0.23324 161 ->163 0.39737 161 ->167 0.11295 161 ->168 -0.17742

Excited state symmetry could not be determined.

Excited State 9: Singlet-?Sym 2.6736 eV 463.74 nm f=0.2126 <S**2>=0.000 159 ->163 -0.24519 160 ->163 0.64726 Excited state symmetry could not be determined. Excited State 10: Singlet-?Sym 2.7527 eV 450.40 nm f=0.0188 <S**2>=0.000 -0.10168 155 ->162 157 ->162 0.56697 158 ->162 0.18196 159 ->163 0.12790 0.20898 0.11411 161 ->163 161 ->164 Excited state symmetry could not be determined. Excited State 11: Singlet-?Sym 2.8034 eV 442.27 nm f=0.0021 <S**2>=0.000 155 ->167 0.26464 157 ->167 0.18661 159 ->163 0.36721 159 ->164 0.19206 159 ->169 0.16008 -0.14971 161 ->163 161 ->164 -0.11269 161 ->168 0.10334 Excited state symmetry could not be determined. Excited State 12: Singlet-?Sym 2.9385 eV 421.93 nm f=0.0681 <S**2>=0.000 154 ->162 -0.17068 155 ->162 0.18700 0.10/00 157 ->162 158 ->162 0.61264 Excited state symmetry could not be determined. Excited State 13: Singlet-?Sym 2.9463 eV 420.82 nm f=0.0083 <S**2>=0.000 155 ->162 0.57228 158 ->162 -0.17369 159 ->167 0.15434 161 ->163 0.11254 161 ->164 0.23728 Excited state symmetry could not be determined. Excited State 14: Singlet-?Sym 3.0407 eV 407.76 nm f=0.0174 <S**2>=0.000 154->1620.62537154->1630.11165155->162-0.12249

158 ->162 0.17512 161 ->164 0.15006 Excited state symmetry could not be determined. Excited State 15: Singlet-?Sym 3.0827 eV 402.19 nm f=0.0010 <S**2>=0.000 154 ->162 -0.22575 -0.24827 155 ->162 0.15731 155 ->163 155 ->164 -0.10383 157 ->163 0.21325 159 ->167 0.19123 161 ->164 0.44110 Excited state symmetry could not be determined. Singlet-?Sym 3.1478 eV 393.88 nm Excited State 16: f=0.0003 <S**2>=0.000 156 ->162 0.70456 Excited state symmetry could not be determined. Excited State 17: Singlet-?Sym 3.2101 eV 386.23 nm f=0.0057 <S**2>=0.000 155 ->167 -0.20650 157 ->167 -0.13127 159 ->164 0.47793 0.13818 159 ->168 159 ->169 -0.10241 160 ->164 0.34274 161 ->164 -0.10398 161 ->167 -0.10177 Excited state symmetry could not be determined. Singlet-?Sym 3.2963 eV 376.13 nm Excited State 18: f=0.1639 <S**2>=0.000 158 ->164 0.10772 159 ->164 -0.35962 160 ->164 0.57480 Excited state symmetry could not be determined. Singlet-?Sym 3.3064 eV 374.99 nm Excited State 19: f=0.0031 <S**2>=0.000 153 ->162 0.69974 Excited state symmetry could not be determined. Excited State 20: Singlet-?Sym 3.3790 eV 366.93 nm f=0.0293 <S**2>=0.000 152 ->162 0.57974 155 ->163 -0.11954157 ->163 0.30719 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 20 LETran= 370.

BTD 2d

Excitation energies and oscillator strengths: Excited state symmetry could not be determined. Singlet-?Sym 1.6768 eV 739.40 nm Excited State 1: f=0.0027 <S**2>=0.000 152 ->155 0.44455 152 ->156 0.39113 152 ->157 -0.18989 152 ->159 -0.10593 152 ->161 -0.15826 152 ->162 0.14280 153 ->160 -0.14754This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2232.58943843Copying the excited state density for this state as the 1-particle RhoCI density. Excited state symmetry could not be determined. Excited State 2: Singlet-?Sym 1.7209 eV 720.45 nm f=0.0115 <S**2>=0.000 152 ->160 0.13235 153 ->155 0.54600 153 ->156 0.30620 153 ->157 -0.12981 153 ->161 -0.13858 153 ->162 0.13538 Excited state symmetry could not be determined. 3: Excited State Singlet-?Sym 1.9677 eV 630.09 nm f=0.0278 <S**2>=0.000 152 ->160 -0.19674 153 ->155 0.43903 153 ->156 -0.32525 153 ->157 0.19883 153 ->159 0.10825 153 ->161 0.17187 153 ->162 -0.15052 154 ->155 0.12361 Excited state symmetry could not be determined. Excited State 4: Singlet-?Sym 1.9937 eV 621.89 nm f=0.5038 <S**2>=0.000 152 ->155 0.18111 152 ->156 -0.15004 152 ->157 0.10018 154 ->155 0.63121

Excited state symmetry could not be determined. Excited State 5: Singlet-?Sym 2.0371 eV 608.62 nm f=0.1155 <S**2>=0.000 152 ->155 0.50680 152 ->156 -0.21043 152 ->157 0.14304 0.11287 152 ->161 152 ->162 -0.11249 153 ->156 -0.10020 153 ->160 0.16047 154 ->155 -0.27743 Excited state symmetry could not be determined. Excited State 6: Singlet-?Sym 2.3616 eV 525.00 nm f=0.0034 <S**2>=0.000 148 ->155 -0.14994 148 ->156 -0.24605 148 ->157 0.15445 148 ->159 0.11065 148 ->161 0.17549 148 ->162 -0.15916 150 ->155 -0.11298 150 ->156 -0.16504 150 ->161 0.11795 150 ->162 -0.10145-0.11807 152 ->159 152 ->160 0.36496 153 ->156 -0.13160 153 ->160 -0.11216 Excited state symmetry could not be determined. Excited State 7: Singlet-?Sym 2.4712 eV 501.72 nm f=0.0014 <S**2>=0.000 148 ->160 -0.18077 150 ->160 -0.16706 152 ->156 0.27561 152 ->160 0.15788 153 ->156 -0.12348 153 ->159 -0.17019 153 ->160 0.48009 Excited state symmetry could not be determined. Excited State 8: Singlet-?Sym 2.5642 eV 483.52 nm f=0.1257 <S**2>=0.000 154 ->156 0.68842 Excited state symmetry could not be determined. Excited State 9: Singlet-?Sym 2.6233 eV 472.62 nm f=0.0059 <S**2>=0.000 148 ->155 -0.11058 148 ->156 -0.14264 150 ->155 -0.28838

150 ->156 -0.12625 152 ->156 0.13188 152 ->159 0.10012 152 ->160 -0.23603 153 ->156 0.40915 153 ->160 0.11236 153 ->161 0.15672 153 ->162 -0.10741 Excited state symmetry could not be determined. Excited State 10: Singlet-?Sym 2.7569 eV 449.72 nm f=0.0250 <S**2>=0.000 150 ->155 0.56505 151 ->155 0.22298 152 ->156 0.14107 153 ->156 0.17960 153 ->157 0.10788 Excited state symmetry could not be determined. Excited State 11: Singlet-?Sym 2.7978 eV 443.15 nm f=0.0022 <S**2>=0.000 148 ->160 0.25643 150 ->155 -0.10669 150 ->160 0.18601 152 ->156 0.36811 152 ->157 0.20979 152 ->159 0.12675 152 ->161 0.19936 152 ->162 -0.18762 152 ->163 0.10394 153 ->156 -0.15558 153 ->157 -0.11813 Excited state symmetry could not be determined. Excited State 12: Singlet-?Sym 2.8707 eV 431.89 nm f=0.1849 <S**2>=0.000 150 ->155 -0.23253 151 ->155 0.64657 Excited state symmetry could not be determined. Excited State 13: Singlet-?Sym 2.9516 eV 420.06 nm f=0.0032 <S**2>=0.000 148 ->155 0.59703 152 ->160 0.17052 153 ->156 0.10913 153 ->157 0.24792 Excited state symmetry could not be determined. Excited State 14: Singlet-?Sym 3.0353 eV 408.48 nm f=0.0060 <S**2>=0.000 149 ->155 0.69427

Excited state symmetry could not be determined. Excited State 15: Singlet-?Sym 3.0444 eV 407.25 nm f=0.0140 <S**2>=0.000 147 ->155 0.63075 147 ->156 0.11853 148 ->155 -0.13532153 ->157 0.16286 Excited state symmetry could not be determined. Excited State 16: Singlet-?Sym 3.0816 eV 402.34 nm f=0.0010 <S**2>=0.000 147 ->155 -0.24993 148 ->155 -0.26119 148 ->156 0.15370 148 ->157 -0.10271 150 ->156 0.21309 152 ->160 0.19516 153 ->157 0.42699 Excited state symmetry could not be determined. Excited State 17: Singlet-?Sym 3.1850 eV 389.28 nm f=0.1093 <S**2>=0.000 148 ->160 -0.11000 152 ->157 0.22998 154 ->157 0.61849 Excited state symmetry could not be determined. Singlet-?Sym 3.2207 eV 384.96 nm Excited State 18: f=0.0445 <S**2>=0.000 -0.17478 148 ->160 150 ->160 -0.11494 152 ->157 0.53630 152 ->162 0.10679 154 ->157 -0.29675 Excited state symmetry could not be determined. Excited State 19: Singlet-?Sym 3.3837 eV 366.41 nm f=0.0388 <S**2>=0.000 146 ->155 0.56561 148 ->156 -0.12913 150 ->156 0.33329 Excited state symmetry could not be determined. Excited State 20: Singlet-?Sym 3.4339 eV 361.06 nm f=0.0379 <S**2>=0.000 151 ->156 0.67531 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 20 LETran= 370.

Excitation energies and oscillator strengths: Excited state symmetry could not be determined. Excited State 1: Singlet-?Sym 1.8587 eV 667.06 nm f=0.0002 <S**2>=0.000 165 ->169 0.28582 165 ->171 -0.20109 165 ->172 -0.11092 165 ->176 0.21803 165 ->177 0.39477 166 ->175 0.28241 166 ->176 0.18234 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2385.11548561Copying the excited state density for this state as the 1-particle RhoCI density. Excited state symmetry could not be determined. Singlet-?Sym 1.8774 eV 660.40 nm Excited State 2: f=0.0052 <S**2>=0.000 165 ->175 -0.29721 165 ->176 -0.19186 166 ->169 0.27074 166 ->171 -0.18827 166 ->172 -0.10560166 ->176 0.21458 166 ->177 0.38587 Excited state symmetry could not be determined. Excited State 3: Singlet-?Sym 2.2296 eV 556.07 nm f=1.0321 <S**2>=0.000 164 ->168 -0.17424 167 ->168 0.65164 167 ->169 -0.15333 Excited state symmetry could not be determined. Excited State 4: Singlet-?Sym 2.4011 eV 516.35 nm f=0.0028 <S**2>=0.000 158 ->169 -0.13701 158 ->171 0.10462 158 ->176 -0.11694 158 ->177 -0.23082 159 ->169 -0.12787159 ->176 -0.13141 159 ->177 -0.23488 165 ->175 0.34123 165 ->176 0.27242 166 ->169 0.13662 166 ->175 -0.12905 166 ->177 0.14620

Excited state symmetry could not be determined.

Excited State 5: Singlet-?Sym 2.4719 eV 501.57 nm f=0.0002 <S**2>=0.000 158 ->175 0.16695 158 ->176 0.11046 159 ->175 0.24395 159 ->176 0.17144 162 ->175 0.13766 162 ->176 0.10362 165 ->169 -0.16263 165 ->171 0.10133 165 ->175 0.14189 165 ->177 -0.15566 166 ->175 0.37628 166 ->176 0.29717 Excited state symmetry could not be determined. Excited State 6: Singlet-?Sym 3.0818 eV 402.32 nm f=0.0172 <S**2>=0.000 158 ->169 0.10144 158 ->177 0.15607 159 ->169 0.15120 159 ->171 -0.11081 159 ->177 0.19470 165 ->175 0.19793 165 ->176 0.14473 166 ->168 0.43126 166 ->169 0.28279 Excited state symmetry could not be determined. Excited State 7: Singlet-?Sym 3.2120 eV 386.00 nm f=0.0119 <S**2>=0.000 164 ->168 -0.27952 164 ->169 -0.10764 165 ->168 0.22568 165 ->169 0.13973 167 ->169 0.44113 167 ->170 0.29413 Excited state symmetry could not be determined. Singlet-?Sym 3.2441 eV 382.19 nm Excited State 8: f=0.0106 <S**2>=0.000 158 ->175 0.14184 158 ->176 0.13350 159 ->175 0.15235 159 ->176 0.14587 164 ->168 0.15128 165 ->168 0.34938 165 ->169 0.26976 165 ->177 -0.10609 -0.21556 166 ->168 166 ->175 -0.12471 167 ->169 -0.19752

Excited state symmetry could not be determined. Excited State 9: Singlet-?Sym 3.2743 eV 378.66 nm f=0.0204 <S**2>=0.000 158 ->177 -0.11472 159 ->169 -0.13414 159 ->175 0.11898 159 ->177 -0.13724162 ->168 -0.21979 162 ->169 -0.15323 165 ->168 0.21119 165 ->175 -0.18274 165 ->176 -0.17496 166 ->168 0.36711 166 ->171 0.13780 166 ->177 -0.14638 Excited state symmetry could not be determined. Excited State 10: Singlet-?Sym 3.4486 eV 359.52 nm f=0.1909 <S**2>=0.000 164 ->168 0.55234 164 ->169 -0.18357 167 ->168 0.22543 167 ->169 0.27308 Excited state symmetry could not be determined. Singlet-?Sym 3.4753 eV 356.76 nm Excited State 11: f=0.0624 <S**2>=0.000 164 ->168 0.12060 164 ->169 0.17733 167 ->169 -0.26214 167 ->170 0.59432 167 ->171 -0.10007 Excited state symmetry could not be determined. Excited State 12: Singlet-?Sym 3.5424 eV 350.01 nm f=0.0039 <S**2>=0.000 158 ->175 -0.23178 158 ->176 -0.17244 159 ->175 -0.24809 159 ->176 -0.18099 164 ->168 0.10655 165 ->168 0.38877 165 ->171 0.14929 165 ->177 -0.16242 166 ->175 0.20390 166 ->176 0.13906 Excited state symmetry could not be determined. Excited State 13: Singlet-?Sym 3.6698 eV 337.85 nm f=0.0559 <S**2>=0.000

167 ->170 -0.14968

158 ->168 -0.12127 162 ->168 0.56637 162 ->169 0.23779 166 ->168 0.19821 166 ->177 -0.11221 Excited state symmetry could not be determined. Excited State 14: Singlet-?Sym 3.8058 eV 325.78 nm f=0.0525 <S**2>=0.000 163 ->168 0.46445 -0.20218 163 ->169 163 ->170 -0.35764 167 ->173 -0.31057 Excited state symmetry could not be determined. Excited State 15: Singlet-?Sym 3.8801 eV 319.54 nm f=0.1584 <S**2>=0.000 162 ->169 -0.19974 166 ->168 -0.21347 166 ->169 0.46284 166 ->171 -0.12950 166 ->176 -0.18756 166 ->177 -0.26658 Excited state symmetry could not be determined. Excited State 16: Singlet-?Sym 3.9504 eV 313.85 nm f=0.0133 <S**2>=0.000 165 ->168 -0.28888 165 ->169 0.41432 165 ->171 -0.16075 165 ->176 -0.18323 -0.31228 165 ->177 166 ->175 0.10054 Excited state symmetry could not be determined. Excited State 17: Singlet-?Sym 3.9974 eV 310.16 nm f=0.0973 <S**2>=0.000 157 ->168 0.20320 164 ->171 -0.27353 167 ->171 0.57509 Excited state symmetry could not be determined. Excited State 18: Singlet-?Sym 4.1031 eV 302.17 nm f=0.0082 <S**2>=0.000 154 ->168 0.16616 154 ->169 -0.10298 155 ->168 0.27425 156 ->168 0.12241 161 ->168 0.43729 161 ->169 0.30257 162 ->169 0.12698

Excited state symmetry could not be determined. Excited State 19: Singlet-?Sym 4.1152 eV 301.28 nm f=0.0315 <S**2>=0.000 154 ->168 -0.25875 155 ->168 -0.30038 155 ->169 0.14781 0.37363 157 ->168 161 ->168 0.25865 161 ->169 0.19756 Excited state symmetry could not be determined. Singlet-?Sym 4.1323 eV 300.04 nm Excited State 20: f=0.0714 <S**2>=0.000 154 ->168 0.26522 154 ->169 -0.10592 155 ->168 0.21800 157 ->168 0.49370 -0.11584 161 ->168 167 ->171 -0.16092 Excited state symmetry could not be determined. Excited State 21: Singlet-?Sym 4.2384 eV 292.52 nm f=0.1325 <S**2>=0.000 -0.10663 159 ->168 162 ->168 -0.21421 162 ->169 0.49389 162 ->171 -0.22299 166 ->169 0.11935 166 ->177 -0.14688 Excited state symmetry could not be determined. Excited State 22: Singlet-?Sym 4.3163 eV 287.25 nm f=0.0933 <S**2>=0.000 154 ->168 -0.13002 155 ->168 0.14089 161 ->168 0.10039 164 ->169 0.53088 167 ->169 0.24945 Excited state symmetry could not be determined. Excited State 23: Singlet-?Sym 4.3873 eV 282.60 nm f=0.0688 <S**2>=0.000 -0.35459 160 ->168 160 ->169 0.14354 160 ->170 0.21581 163 ->168 0.40222 163 ->170 0.19886 167 ->173 0.28089 Excited state symmetry could not be determined. Excited State 24: Singlet-?Sym 4.4669 eV 277.56 nm f=0.0165 <S**2>=0.000

158 ->168 0.48579 158 ->169 0.32140 159 ->168 0.23235 159 ->177 -0.17247 Excited state symmetry could not be determined. Singlet-?Sym 4.5201 eV 274.30 nm Excited State 25: f=0.0018 <S**2>=0.000 160 ->168 0.45853 160 ->169 -0.16328 160 ->170 -0.21545 163 ->168 0.29774 163 ->170 0.22103 167 ->173 0.24165 Excited state symmetry could not be determined. Excited State 26: Singlet-?Sym 4.5556 eV 272.16 nm f=0.0310 <S**2>=0.000 153 ->168 0.12275 158 ->168 -0.14307 158 ->169 -0.17223 159 ->168 0.49439 159 ->169 0.27419 162 ->168 -0.17324 164 ->169 0.12190 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 26 LETran= 478. BTD 2f Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 1.2700 eV 976.26 nm f=0.0277 <S**2>=0.000 217 -> 218 0.70314 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -3043.99173642Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 1.4925 eV 830.71 nm f=0.0024 <S**2>=0.000 216 -> 218 0.67377 216 -> 219 -0.16064 Excited State 3: Singlet-A 1.5336 eV 808.44 nm f=0.0028 <S**2>=0.000 215 -> 218 0.60162 215 -> 219 -0.23648 215 -> 220 -0.18648

Excited State	4:	Singlet-A	1.7556 eV	706.22 nm	f=0.0005
$<5^{2}=0.000$		0 20762			
213 - 210 215 - 210		0.30702			
213 - 219 215 - 220		0.20444			
21J = 220		0.10021			
210 - 221		0.15051			
ZIJ = ZZZ		-0.15954			
215 -> 227		-0.20625			
215 -> 229		-0.11341			
216 -> 220		-0.11204			
216 -> 226		-0.15652			
Excited State	5:	Singlet-A	1.8086 eV	685.53 nm	f=0.0145
<s**2>=0.000</s**2>					
215 -> 218		0.17210			
215 -> 226		0.17541			
216 -> 218		0.14992			
216 -> 219		0.32395			
216 -> 220		0.34580			
216 -> 221		0.17309			
216 -> 222		-0.14483			
216 -> 227		-0.22400			
216 -> 229		-0.13725			
216 -> 230		0.11664			
Excited State	6:	Singlet-A	1.9471 eV	636.75 nm	f=0.2056
<s**2>=0.000</s**2>					
217 -> 219		0.70266			
Excited State	7:	Singlet-A	2.2586 eV	548.95 nm	f=0.0010
<s**2>=0.000</s**2>		j			
215 -> 226		-0.23559			
215 -> 227		-0.12007			
216 -> 219		0.56932			
216 -> 220		-0 14148			
216 -> 221		-0 12308			
210 - 221		0.10114			
216 -> 222		0.12581			
210 / 227		0.12301			
Excited State	8:	Singlet-A	2.2909 eV	541.20 nm	f=0.1949
<s**2>=0.000</s**2>					
217 -> 220		0.70212			
Excited State	9.	Singlet-A	2.3141 eV	535.78 nm	f=0.0001
<\$**2>=0 000	٠.	STUGTOC 11	2.0111 (V	000.70 mil	- 0.0001
27 - 0.000		0 53167			
21J -/ 219 215 _\ 201		-0 1003/			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.10934			
210 = 229		0.10099			
210 -> 220		0.2/329			
216 -> 227		0.12618			

Excited Sta	ate	10:	Singlet	-A	2.3435	eV	529.05	nm	f=0.0026
<s**2>=0.000</s**2>	C								
211 ->	218		0.12026						
211 ->	219		-0.15375						
211 ->	220		-0.18167						
211 ->	221		-0.12233						
211 ->	227		0.14198						
211 ->	229		0.11597						
214 ->	218		0.28717						
214 ->	219		-0.14226						
214 ->	220		-0.13032						
215 ->	219		0.17738						
215 ->	226		0.22043						
215 ->	227		0.16114						
216 ->	219		0.15132						
216 ->	220		-0.13878						
Excited Sta	ate	11:	Singlet	-A	2.4100	eV	514.45	nm	f=0.0170
<s**2>=0.000</s**2>	C								
214 ->	218		0.61754						
215 ->	226		-0.17711						
216 ->	220		0.11703						
Excited Sta	ate	12:	Singlet	-A	2.4806	eV	499.81	nm	f=0.0001
<s**2>=0.000</s**2>	C								
211 ->	226		-0.13627						
214 ->	226		-0.13316						
215 ->	219		-0.21132						
215 ->	220		0.34446						
215 ->	226		0.12814						
216 ->	220		-0.21406						
216 ->	225		-0.10728						
216 ->	226		0.37947						
216 ->	227		0.14611						
Excited Sta	ate	13:	Singlet	-A	2.5665	eV	483.09	nm	f=0.0039
<s**2>=0.000</s**2>)		2						
211 ->	218		0.22297						
211 ->	219		-0.10478						
214 ->	218		-0.10345						
215 ->	220		0.20723						
215 ->	226		-0.16457						
216 ->	220		0.45823						
216 ->	221		-0.12498						
216 ->	227		0.18605						
				_	0 0000		400.00		
Excited Sta	ate	14:	Singlet	-A	2.6211	eV	473.03	nm	i=0.0669
<s**2>=0.000</s**2>	J		0 1 7 1 1 0						
212 ->	218		0.1/148						
213 ->	218		U.66087						

Excited State <s**2>=0.000 211 -> 21 212 -> 21 215 -> 22</s**2>	8 8 8 0	Singlet-A 0.56851 -0.26738 -0.14523	2.6523 eV	467.45 nm	f=0.0017
Excited State <s**2>=0.000 209 -> 21 211 -> 21 212 -> 21</s**2>	8 16: 8 8 8	Singlet-A -0.43667 0.22034 0.47087	2.6941 eV	460.20 nm	f=0.0828
Excited State <s**2>=0.000 211 -> 22 211 -> 22 214 -> 22 215 -> 22 216 -> 22 216 -> 22 216 -> 22 216 -> 22</s**2>	17: 17: 17: 10: 10: 10: 10: 10: 10: 10: 10	Singlet-A 0.21779 0.11389 0.17204 0.36916 -0.23041 0.12762 0.10335 0.15239 0.13713 -0.10974 -0.14076 0.11867 -0.13451 -0.14691	2.7187 eV	456.05 nm	f=0.0014
Excited State <s**2>=0.000 208 -> 21 209 -> 21 210 -> 21 211 -> 21 212 -> 21 213 -> 21</s**2>	8 18: 8 8 8 8 8 8 8 8 8 8 8 8	Singlet-A 0.17275 0.45611 -0.30000 0.15528 0.34354 -0.10397	2.7991 eV	442.95 nm	f=0.1689
Excited State <s**2>=0.000 205 -> 21 209 -> 21 210 -> 21 212 -> 21</s**2>	8 19: 8 8 8 8 8	Singlet-A -0.11390 0.24183 0.61318 0.14604	2.8316 eV	437.86 nm	f=0.0387
Excited State <s**2>=0.000 208 -> 21 212 -> 21 213 -> 21 217 -> 22 217 -> 22</s**2>	20: 8 8 8 1 2	Singlet-A 0.41064 -0.10998 0.15178 0.40883 0.31834	2.8588 eV	433.70 nm	f=0.3086

SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 20 LETran= 370.

BTDg

Excitation energies and oscillator strengths: Excited State 1: Singlet-A 1.6030 eV 773.45 nm f=0.0035 <S**2>=0.000 195 ->196 0.65148 195 ->197 -0.16699 195 ->198 -0.13680 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2804.80069686Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 1.6200 eV 765.32 nm f=0.0017 Singlet-A <S**2>=0.000 193 ->196 0.51363 193 ->197 -0.24739 193 ->198 -0.28241 193 ->200 -0.15697 193 ->206 -0.10558 Excited State 3: Singlet-A 1.6664 eV 744.04 nm f=0.0005 <S**2>=0.000 192 ->197 0.42726 192 ->198 -0.28825 192 ->199 -0.22106 192 ->200 0.14788 192 ->205 -0.15570 192 ->207 -0.15801 194 ->196 0.19174 194 ->203 0.15200 Excited State 4: Singlet-A 1.7081 eV 725.85 nm f=0.0022 <S**2>=0.000 192 ->196 -0.11141 192 ->197 -0.14534 194 ->196 0.61471 194 ->197 0.23219 Excited State 5: Singlet-A 1.7529 eV 707.32 nm f=0.0075 <S**2>=0.000

192 ->196 192 ->203 194 ->196 194 ->197 194 ->198 194 ->199 194 ->200 194 ->205 194 ->207		0.32683 0.16545 0.25757 -0.31029 0.24515 0.17998 -0.12750 0.15010 0.16121			
Excited State <s**2>=0.000 193 ->196 193 ->197 193 ->198 193 ->200 193 ->205 193 ->206 195 ->196 195 ->197 195 ->198 195 ->200 195 ->204 195 ->208</s**2>	6:	Singlet-A 0.33097 0.14950 0.26423 0.18781 0.17602 0.12233 0.19374 0.14240 0.22308 0.15490 -0.16155 0.11074	1.8015 eV	688.24 nm	f=0.0013
Excited State <s**2>=0.000 192 ->196 194 ->197 194 ->198</s**2>	7:	Singlet-A 0.59785 0.21088 -0.14324	1.8279 eV	678.30 nm	f=0.0101
Excited State <s**2>=0.000 193 ->196 193 ->198 193 ->200 193 ->204 195 ->196 195 ->197 195 ->198 195 ->200 195 ->205 195 ->206 195 ->208</s**2>	8:	Singlet-A 0.32960 0.16226 0.12494 -0.17631 -0.14701 -0.21030 -0.30285 -0.18429 -0.18865 -0.15158 -0.15158 -0.11545	1.8459 eV	671.68 nm	f=0.0130
Excited State <s**2>=0.000 190 ->197 192 ->202 192 ->203 192 ->207 194 ->197</s**2>	9:	Singlet-A -0.11688 0.11160 0.38668 -0.11233 0.34446	2.3168 eV	535.16 nm	f=0.0043

194 ->199 194 ->203		0.10577 0.11858			
Excited State <s**2>=0.000 189 ->198 189 ->200 191 ->198 193 ->204 193 ->205 195 ->197</s**2>	10:	Singlet-A 0.13767 0.11100 0.10185 -0.34578 -0.19571 0.39416	2.3299 eV	532.14 nm	f=0.0029
Excited State <s**2>=0.000 189 ->198 192 ->197 193 ->197 194 ->197 194 ->203 195 ->197 195 ->204</s**2>	11:	Singlet-A -0.10353 0.20261 0.20937 0.13293 -0.19693 0.34302 0.22848	2.3717 eV	522.77 nm	f=0.0002
Excited State <s**2>=0.000 192 ->197 193 ->197 194 ->197 194 ->202 194 ->203 194 ->207 195 ->197 195 ->204</s**2>	12:	Singlet-A 0.29246 -0.13523 0.21368 -0.11278 -0.28081 0.13182 -0.23343 -0.15752	2.3719 eV	522.71 nm	f=0.0003
Excited State <s**2>=0.000 188 ->197 190 ->197 192 ->197 192 ->203 194 ->197 194 ->198 194 ->199 194 ->203</s**2>	13:	Singlet-A 0.12240 0.12891 -0.23686 -0.12459 0.31841 0.15142 0.15087 0.20166	2.3870 eV	519.42 nm	f=0.0004
Excited State <s**2>=0.000 193 ->197 193 ->205 193 ->206 195 ->197 195 ->198 195 ->204</s**2>	14:	Singlet-A 0.41057 -0.15901 -0.10132 -0.24993 0.14527 0.23478	2.3997 eV	516.67 nm	f=0.0004

195 ->205		0.18228			
Excited State <s**2>=0.000</s**2>	15 :	Singlet-A	2.4961 eV	496.72 nm	f=0.0003
193 ->197		0.38964			
193 ->198		-0.31980			
193 ->204		0.11793			
195 ->198		-0.23761			
195 ->204		-0.27436			
195 ->205		-0.10926			
Excited State <\$**2>=0.000	16:	Singlet-A	2.5158 eV	492.82 nm	f=0.0149
191 ->196		0.57992			
193 ->197		0.11809			
193 ->198		-0.13427			
193 ->204		-0.12763			
195 ->198		0.23943			
195 ->205		-0.11153			
	1 7 .				5 0 0004
Exclied State	1/:	Singlet-A	2.5492 eV	486.3/ 1111	1=0.0004
100 ->202		0 12144			
100 203		0.12144			
190 ->203		0.10902			
192 = >197		0.31120			
192 ->190		0.33232			
192 ->199		0.14900			
192 ->200		-0.10530			
192 ->203		-0.10508			
194 ->190		0.21900			
194 ->203		0.27279			
194 ->207		-0.10013			
Excited State	18:	Singlet-A	2.5716 eV	482.12 nm	f=0.0068
<s**2>=0.000</s**2>					
189 ->196		0.10582			
189 ->198		-0.10574			
191 ->196		-0.35355			
193 ->198		-0.20142			
195 ->198		0.39817			
195 ->200		-0.13291			
195 ->205		-0.14870			
195 ->206		-0.10396			
Excited State	19:	Singlet-A	2.5912 eV	478.47 nm	f=0.0046
<s**2>=0.000</s**2>		-			
190 ->196		-0.22429			
190 ->197		-0.13481			
192 ->198		-0.15854			
192 ->203		-0.14024			
194 ->198		0.53102			
194 ->199		-0.11440			

194	->203	-0.	13424					
Excited <\$**2>=0.	State .000	20:	Singlet-A	2.6206	eV 4	473.11	nm f=	=0.0054
190	->196	0.	64435					
192	->198	-0.	13002					
194	->198	0.	17215					
SavETr:	write	IOETrn=	770 NScale=	10 NData=	= 16	NLR=1	NState	e= 20
LETran=	370.							

Theoretical calculation:

Calculation method: B3LYP/6-31G** for C, H, N, S with Gaussian 09.

BTD 2a

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	 16	0	1.732727	0.385889	3.025903
2	7	0	2.973401	0.185978	1.973918
3	7	0	0.533511	0.783219	1.977448
4	6	0	2.480370	0.425927	0.757218
5	6	0	1.070293	0.768926	0.753833
6	6	0	0.393038	1.078780	-0.480606
7	6	0	1.165535	0.999554	-1.634258
8	1	0	0.702975	1.185449	-2.596055
9	6	0	2.535517	0.655617	-1.636056
10	1	0	3.058801	0.611031	-2.584632
11	6	0	3.234085	0.366835	-0.469392
12	6	0	4.602617	0.027561	-0.462687
13	6	0	5.785147	-0.263321	-0.447834
14	6	0	7.164295	-0.602375	-0.404687
15	6	0	7.924971	-0.675038	-1.590059
16	6	0	7.788143	-0.869156	0.832313
17	6	0	9.275120	-1.006450	-1.534302
18	6	0	9.138904	-1.199270	0.875855
19	6	0	9.884975	-1.269011	-0.304265
20	1	0	10.939161	-1.526854	-0.265450
21	1	0	9.612367	-1.402448	1.831688
22	1	0	7.200769	-0.811691	1.742759
23	1	0	9.854388	-1.059804	-2.451177
24	1	0	7.445471	-0.468896	-2.541409
25	6	0	-1.032292	1.431145	-0.512427

Standard orientation:

2	6 6	0	-1.959523	0.739744	0.446405
2	7 6	0	-1.569417	2.325517	-1.409347
2	8 6	0	-2.560149	1.486015	1.431698
2	9 6	0	-2.096573	-0.698669	0.258869
3	0 6	0	-2.985425	2.526159	-1.524347
3	1 6	0	-0.794867	3.129795	-2.308752
3	2 6	0	-2.247276	2.868448	1.638681
3	3 6	0	-3.505826	0.944827	2.358461
3	4 6	0	-1.821449	-1.393322	-0.979315
3	5 6	0	-2.481723	-1.703661	1.225859
3	6 7	0	-4.127950	2.694456	-1.666161
3	7 7	0	-0.211811	3.803138	-3.057566
3	8 7	0	-2.006492	3.988835	1.840529
3	9 7	0	-4.286830	0.534715	3.117987
4	0 6	0	-2.009802	-2.782334	-0.764381
4	1 1	0	-1.540605	-0.929409	-1.913783
4	2 6	0	-2.407330	-2.972133	0.594313
4	3 1	0	-2.762290	-1.523968	2.251688
4	4 1	0	-1.907078	-3.557397	-1.511014
4	5 1	0	-2.649394	-3.918131	1.058466
4	6 26	0	-3.783685	-1.740463	-0.383609
4	7 6	0	-5.616908	-2.708002	-0.286153
4	8 6	0	-5.715131	-1.420951	0.325551
4	9 6	0	-5.232932	-2.522601	-1.648857
5	0 1	0	-5.768538	-3.658970	0.206096
5	1 6	0	-5.396634	-0.442062	-0.661855
5	2 1	0	-5.945062	-1.220243	1.362599
5	3 6	0	-5.095052	-1.120173	-1.880239
5	4 1	0	-5.048034	-3.308107	-2.368932
5	5 1	0	-5.349925	0.627591	-0.513046
5	6 1	0	-4.795820	-0.650629	-2.806903

E(HF) = -2078.98809911 Hartree

BTD 2b

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	16	0	1.103305	0.260862	3.026985
2	7	0	2.351105	0.208271	1.965052
3	7	0	-0.113062	0.693689	2.011944
4	6	0	1.847191	0.530097	0.772286
5	6	0	0.422777	0.808889	0.793442
6	6	0	-0.269241	1.192271	-0.412417
7	6	0	0.508013	1.245874	-1.566266
8	1	0	0.037098	1.490164	-2.510630
9	6	0	1.890337	0.966212	-1.593152
10	1	0	2.414361	1.025494	-2.540496

11	6	0	2.604021	0.610807	-0.452189
12	6	0	3.984188	0.336473	-0.471004
13	6	0	5.180771	0.102734	-0.484335
14	6	0	6.570788	-0.169188	-0.482830
15	6	0	7.330774	-0.085664	-1.673230
16	6	0	7.229332	-0.527992	0.709506
17	6	0	8.687873	-0.350291	-1.664423
18	6	0	8.594403	-0.795329	0.724257
19	6	0	9.332786	-0.707433	-0.466081
20	1	0	9.071841	-1.067912	1.657574
21	1	0	6.656391	-0.594133	1.628602
22	1	0	9.280767	-0.288616	-2.570691
23	1	0	6.837288	0.190652	-2.599211
24	6	0	-1.706783	1.480501	-0.419859
25	6	0	-2.598333	0.692261	0.497978
26	6	0	-2.292821	2.401744	-1.259625
27	6	0	-3.233009	1.353229	1.522330
28	6	0	-2.670132	-0.738485	0.230797
29	6	0	-3.717166	2.536782	-1.361403
30	6	0	-1.565640	3.300143	-2.107395
31	6	0	-2.983084	2.734138	1.809751
32	6	0	-4.154033	0.718679	2.413933
33	6	0	-2.357577	-1.351921	-1.040608
34	6	0	-3.015948	-1.810502	1.138852
35	7	0	-4.867196	2.656243	-1.492987
36	7	0	-1.022454	4.049839	-2.812629
37	7	0	-2.793448	3.850112	2.079383
38	7	0	-4.916425	0.232536	3.147110
39	6	0	-2.485633	-2.757599	-0.902901
40	1	0	-2.090565	-0.826312	-1.946009
41	6	0	-2.881775	-3.038413	0.440416
42	1	0	-3.310988	-1.699609	2.170290
43	1	0	-2.345658	-3.485483	-1.689850
44	1	0	-3.085010	-4.017800	0.850810
45	26	0	-4.305928	-1.817900	-0.480177
46	6	0	-6.093560	-2.870845	-0.449757
47	6	0	-6.253399	-1.624887	0.230143
48	6	0	-5.711310	-2.594277	-1.797378
49	1	0	-6.205171	-3.853025	-0.010952
50	6	0	-5.974257	-0.580040	-0.699916
51	1	0	-6.498450	-1.492119	1.274738
52	6	0	-5.636296	-1.176496	-1.951140
53	1	0	-5.485980	-3.329966	-2.557400
54	1	0	-5.975140	0.480968	-0.493109
55	1	0	-5.354764	-0.644118	-2.848993
56	8	0	10.664217	-0.945438	-0.566784
57	6	0	11.384284	-1.308008	0.605433
58	1	0	12.418997	-1.444787	0.289582
59	1	0	11.338589	-0.518289	1.365151
60	1	0	11.009044	-2.245599	1.033341

BTD 2c

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 16	0	0.057727	1.043086	2.979360
2	7	0	1.329991	0.837072	1.966689
3	7	0	-1.153342	1.206758	1.882742
4	6	0	0.839450	0.890025	0.726844
5	6	0	-0.595594	1.100432	0.673201
6	6	0	-1.276748	1.199481	-0.593588
7	6	0	-0.478439	1.063469	-1.724895
8	1	0	-0.938483	1.092543	-2.705201
9	6	0	0.916378	0.851076	-1.676923
10	1	0	1.458564	0.746726	-2.610052
11	6	0	1.617520	0.759694	-0.479185
12	6	0	3.008711	0.542579	-0.427466
13	6	0	4.211450	0.351801	-0.384718
14	6	0	-2.728763	1.397382	-0.676731
15	6	0	-3.598887	0.740404	0.356847
16	6	0	-3.338812	2.111007	-1.683411
17	6	0	-4.305432	1.540540	1.223097
18	6	0	-3.570962	-0.716262	0.370120
19	6	0	-4.765082	2.140264	-1.835430
20	6	0	-2.635374	2.877058	-2.670011
21	6	0	-4.149997	2.964347	1.246207
22	6	0	-5.214577	1.027169	2.200803
23	6	0	-3.162846	-1.539790	-0.746464
24	6	0	-3.885551	-1.614692	1.459520
25	7	0	-5.915591	2.161937	-2.007950
26	7	0	-2.111437	3.512515	-3.492139
27	7	0	-4.037421	4.121225	1.300962
28	7	0	-5.970089	0.638729	2.996692
29	6	0	-3.203574	-2.897674	-0.339340
30	1	0	-2.889810	-1.180650	-1.728091
31	6	0	-3.641255	-2.941258	1.019621
32	1	0	-4.233999	-1.328185	2.439122
33	1	0	-2.979339	-3.751814	-0.962869
34	1	0	-3.800454	-3.834847	1.607008
35	26	0	-5.098609	-2.029896	-0.167769

36	6	0	-6.811222	-3.183677	0.026265
37	6	0	-7.083875	-1.840144	0.427571
38	6	0	-6.388151	-3.161157	-1.337414
39	1	0	-6.872612	-4.059928	0.657033
40	6	0	-6.834022	-0.990149	-0.690478
41	1	0	-7.383492	-1.514553	1.413989
42	6	0	-6.401095	-1.803277	-1.779768
43	1	0	-6.080242	-4.017884	-1.921290
44	1	0	-6.916799	0.087662	-0.707840
45	1	0	-6.115714	-1.447768	-2.760063
46	6	0	5.610327	0.127289	-0.316798
47	6	0	6.258117	0.018399	0.931746
48	6	0	6.382438	0.006334	-1.490939
49	6	0	7.626361	-0.205725	0.996172
50	1	0	5.671315	0.101552	1.840633
51	6	0	7.750248	-0.216040	-1.413525
52	1	0	5.897356	0.099857	-2.457158
53	6	0	8.403300	-0.328551	-0.171456
54	1	0	8.100993	-0.314866	1.966223
55	1	0	8.330570	-0.277811	-2.328700
56	6	0	9.864275	-0.570164	-0.096236
57	6	0	10.643529	0.023388	0.912363
58	6	0	10.506794	-1.399947	-1.032007
59	6	0	12.016828	-0.204110	0.981712
60	1	0	10.173587	0.690348	1.629014
61	6	0	11.879774	-1.628472	-0.961131
62	1	0	9.920521	-1.891614	-1.802606
63	6	0	12.640841	-1.031237	0.045654
64	1	0	12.601713	0.272305	1.763226
65	1	0	12.354417	-2.280874	-1.688425
66	1	0	13.710829	-1.208790	0.100363

E (HF) = -2310.0476121 Hartree

BTD 2d

	Standard Orientation.								
Center	Atomic Atomic		Coordinates (Angstroms)						
Number	Number	Туре	Х	Y	Z				
1	16	0	0.640702	2.411671	2.429734				
2	7	0	1.984774	1.748421	1.765734				
3	7	0	-0.462028	2.033748	1.273395				
4	6	0	1.606079	1.205288	0.607267				
5	6	0	0.192846	1.364929	0.319788				

Standard orientation:

6	6	0	-0.370642	0.850944	-0.903230
7	6	0	0.514708	0.195497	-1.752542
8	1	0	0.142254	-0.241481	-2.671288
9	6	0	1.888230	0.027773	-1.471427
10	1	0	2.502317	-0.508464	-2.186262
11	6	0	2.477948	0.514138	-0.309420
12	6	0	3.844922	0.345259	-0.013474
13	6	0	5.022571	0.208885	0.270750
14	6	0	-1.800673	0.982337	-1.208721
15	6	0	-2.782200	0.863026	-0.077730
16	6	0	-2.288895	1.151113	-2.484079
17	6	0	-3.530192	1.964365	0.263291
18	6	0	-2.806864	-0.429056	0.595932
19	6	0	-3.693798	1.102225	-2.770489
20	6	0	-1 466993	1 378052	-3 636661
21	6	0	-3 327531	3 243995	-0 347774
22	6	0	-4 535375	1 944175	1 280712
23	6	0	-2 346522	-1 668251	0 009917
24	6	0	-3 222074	-0 734533	1 947844
25	0 7	0	-/ 823335	1 037399	-3 0/2053
25	7	0	-0 842644	1 563340	-4 601007
20	7	0	-3 180271	1 200571	-0 81/711
20	7	0	-5.367300	4.299971	2 00/002
20	r G	0	-3.307300	1.900291	2.094092
29	0	0	-2.400400	-2.091/03	1 005229
3U 21	1 C	0	-1.999310	-1./940/3	-1.005220
31 20	0	0	-2.984191	-2.114084	2.1/9440
32	1	0	-3.628989	-0.035078	2.001030
33	1	0	-2.211572	-3./34816	0.83/11/
34		0	-3.207613	-2.642889	3.095634
35	26	0	-4.330514	-1.852996	0.603222
36	6	0	-6.104148	-2.753418	1.191655
37	6	0	-6.343547	-1.386563	0.854041
38	6	0	-5.580563	-3.409975	0.036756
39	1	0	-6.253276	-3.202714	2.163975
40	6	0	-5.973807	-1.201831	-0.511853
41	1	0	-6.698001	-0.614688	1.522848
42	6	0	-5.499815	-2.448890	-1.016693
43	1	0	-5.269802	-4.444304	-0.019983
44	1	0	-6.004421	-0.273354	-1.065095
45	1	0	-5.125336	-2.625791	-2.015345
46	6	0	6.384502	0.073023	0.641925
47	6	0	7.306543	-0.678592	-0.170842
48	6	0	6.827809	0.678909	1.816545
49	6	0	6.918746	-1.318839	-1.374441
50	6	0	8.668658	-0.782479	0.259449
51	6	0	8.170603	0.569106	2.224133
52	1	0	6.119204	1.240627	2.416102
53	6	0	7.833302	-2.030506	-2.120367
54	1	0	5.886457	-1.238202	-1.699061
55	6	0	9.585994	-1.524235	-0.533273
56	6	0	9.071287	-0.145771	1.463375
57	1	0	8.490614	1.051424	3.142483

58	6	0	9.179657	-2.135708	-1.697291
59	1	0	7.520397	-2.514676	-3.040760
60	1	0	10.618116	-1.599629	-0.201417
61	1	0	10.108234	-0.232087	1.777091
62	1	0	9.889764	-2.699700	-2.294621

E (HF) = -2232.6322885 Hartree

BTD 2e

Standard orientation:

		·			
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number 	Number	Туре	X	Y 	Z
1	16	0	0.368168	-2.684197	1.405716
2	7	0	1.631626	-1.731470	0.972566
3	7	0	-0.832809	-1.565092	1.420541
4	6	0	1.144197	-0.498569	0.824826
5	6	0	-0.280731	-0.397126	1.079440
6	6	0	-0.956818	0.873528	0.979376
7	6	0	-0.160803	1.955037	0.607564
8	1	0	-0.617951	2.928120	0.477038
9	6	0	1.222392	1.859827	0.352605
10	1	0	1.759084	2.755452	0.060327
11	6	0	1.920398	0.658820	0.452390
12	6	0	3.298548	0.541520	0.204518
13	6	0	4.492799	0.389146	-0.000462
14	6	0	-2.395251	1.004611	1.227234
15	6	0	-3.291837	-0.140749	0.848553
16	6	0	-2.980079	2.140066	1.744890
17	6	0	-3.938487	-0.825032	1.849810
18	6	0	-3.351145	-0.450353	-0.574114
19	6	0	-4.404330	2.294189	1.813221
20	6	0	-2.252857	3.265131	2.253970
21	6	0	-3.697187	-0.556215	3.236017
22	6	0	-4.861821	-1.889224	1.603214
23	6	0	-3.023870	0.480824	-1.630615
24	6	0	-3.686402	-1.705137	-1.211131
25	7	0	-5.554260	2.467184	1.858083
26	7	0	-1.708709	4.202341	2.678433
27	7	0	-3.513621	-0.373318	4.370444
28	7	0	-5.625716	-2.750880	1.432563
29	6	0	-3.132418	-0.195223	-2.872540
30	1	0	-2.758600	1.519449	-1.495324

31	6	0	-3.531427	-1.541747	-2.612057
32	1	0	-3.986982	-2.611743	-0.710299
33	1	0	-2.977116	0.244436	-3.847798
34	1	0	-3.722151	-2.302677	-3.356182
35	26	0	-4.968121	-0.218829	-1.869765
36	6	0	-6.745112	-0.676979	-2.837647
37	6	0	-6.919643	-0.791307	-1.424537
38	6	0	-6.360934	0.666971	-3.129370
39	1	0	-6.847149	-1.477898	-3.557240
40	6	0	-6.648233	0.483899	-0.845634
41	1	0	-7.167210	-1.692265	-0.880607
42	6	0	-6.299767	1.384365	-1.895933
43	1	0	-6.125636	1.061909	-4.108239
44	1	0	-6.660099	0.726177	0.207821
45	1	0	-6.020112	2.421317	-1.772181
46	6	0	5.867715	0.169243	-0.232977
47	6	0	6.720457	1.261967	-0.568371
48	6	0	6.387794	-1.156204	-0.130164
49	6	0	6.244991	2.600485	-0.675565
50	6	0	8.118786	1.012376	-0.807651
51	6	0	7.790032	-1.378009	-0.376158
52	6	0	5.572211	-2.275570	0.207118
53	6	0	7.095797	3.628425	-0.999132
54	1	0	5.193280	2.793699	-0.493494
55	6	0	8.971934	2.108877	-1.143101
56	6	0	8.612735	-0.294146	-0.706945
57	6	0	8.311273	-2.705087	-0.276457
58	1	0	4.515407	-2.118943	0.397732
59	6	0	6.112525	-3.535350	0.293367
60	6	0	8.476811	3.382934	-1.236778
61	1	0	6.713271	4.642089	-1.074205
62	1	0	10.024925	1.908105	-1.321468
63	1	0	9.669836	-0.472606	-0.890589
64	6	0	7.496323	-3.757026	0.049020
65	1	0	9.370314	-2.859757	-0.464608
66	1	0	5.475811	-4.376099	0.552758
67	1	0	9.133469	4.209345	-1.491193
68	1	0	7.901105	-4.761883	0.122994

E(HF) = -2386.2721504 Hartree

BTD 2f

Center	Atomic	Atomic	Coord	inates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	16	0	-2.621648	-2.687974	2.919183

2	7	0	-1.086791	-2.564675	2.374667
3	7	0	-3.246039	-1.294008	2.328539
4	6	0	-1.005467	-1.409777	1.710548
5	6	0	-2.258888	-0.679607	1.669539
6	6	0	-2.359854	0.568896	0.963390
7	6	0	-1.217639	0.994837	0.304606
8	1	0	-1.243588	1.906508	-0.279845
9	6	0	-0.001494	0.268712	0.324734
10	1	0	0.836407	0.668269	-0.237209
11	6	0	0.157180	-0.910845	1.031875
12	6	0	-3,627807	1,322781	0.901408
13	6	0	-4 906153	0 553535	0 745768
14	6	0	-3.671174	2,693900	0.926567
15	6	0	-5 833736	0 613122	1 760207
16	6	0	-5 016715	-0 240716	-0 468985
17	6	0	-4 888283	3 421394	0.701877
18	6	0	-2 527006	3 528036	1 160000
10	6	0	-5 573105	1 227722	2 006315
20	6	0	-7 112025	_0 021510	1 600124
20	6	0	-1.250709	-0.021310	-1 670414
21	6	0	-4.239700	-0.004271	-1.079414
22	0 7	0	-5.050009	-1.40/411	-0./11424
23	7	0	-5.647061	4.044130	1 240222
24	/	0	-1.62/605	4.243339	1.340387
20	/	0	-5.385933	1.819594	4.014258
26		0	-8.16/698	-0.513321	1.653104
27	6	0	-4.589631	-1.014835	-2.61/380
28		0	-3.5/4332	0.814004	-1.8461/4
29	6	0	-5.553626	-1.880305	-2.017425
30	1	0	-6.532299	-1.852511	-0.016495
31	1	0	-4.204627	-1.093818	-3.624212
32	1	0	-6.019354	-2.734361	-2.488965
33	26	0	-6.293563	0.077514	-2.083092
34	6	0	-8.035154	0.005758	-3.207220
35	6	0	-8.315558	0.545039	-1.914621
36	6	0	-7.076815	0.852173	-3.842582
37	1	0	-8.444606	-0.907282	-3.617261
38	6	0	-7.533535	1.727837	-1.755651
39	1	0	-8.968515	0.114249	-1.168468
40	6	0	-6.765666	1.917008	-2.943279
41	1	0	-6.638501	0.694337	-4.818521
42	1	0	-7.496984	2.357786	-0.877323
43	1	0	-6.058221	2.715355	-3.119344
44	6	0	1.450558	-1.622294	1.013844
45	6	0	2.187530	-1.689010	-0.294248
46	6	0	2.017314	-2.177582	2.131677
47	6	0	3.503161	-1.066770	-0.364805
48	6	0	1.539517	-2.314914	-1.346414
49	6	0	3.225123	-2.950445	2.064703
50	6	0	1.510882	-1.991245	3.459811
51	6	0	3.830454	0.008093	0.498243
52	6	0	4.507318	-1.490248	-1.267875
53	6	0	0.290772	-2.989873	-1.162429

54	6	0	2.014335	-2.322941	-2.694974
55	7	0	4.191862	-3.597025	2.052484
56	7	0	1.179791	-1.812534	4.560172
57	6	0	5.058175	0.638234	0.449116
58	1	0	3.102285	0.360448	1.221750
59	6	0	5.746267	-0.882621	-1.308385
60	1	0	4.326977	-2.326565	-1.930882
61	7	0	-0.729893	-3.536781	-1.036890
62	7	0	2.347980	-2.336587	-3.810695
63	6	0	6.056607	0.203675	-0.454829
64	1	0	5.265673	1.457909	1.125884
65	1	0	6.491538	-1.246051	-2.004947
66	7	0	7.304841	0.813754	-0.494845
67	6	0	8.457804	0.116579	-0.986072
68	6	0	7.492448	2.152657	-0.018707
69	6	0	9.275588	0.718432	-1.950896
70	6	0	8.789054	-1.149284	-0.483287
71	6	0	8.505333	2.428176	0.908927
72	6	0	6.687130	3.194486	-0.499395
73	6	0	10.412891	0.055359	-2.409681
74	1	0	9.016169	1.699996	-2.333987
75	6	0	9.920694	-1.810923	-0.958518
76	1	0	8.161587	-1.607549	0.274589
77	6	0	8.705692	3.734716	1.352165
78	1	0	9.128445	1.619020	1.275587
79	6	0	6.885303	4.495900	-0.039807
80	1	0	5.914274	2.980046	-1.230707
81	6	0	10.737519	-1.211600	-1.919895
82	1	0	11.041051	0.527687	-3.159067
83	1	0	10.170029	-2.791717	-0.564809
84	6	0	7.895327	4.771588	0.884595
85	1	0	9.491847	3.939896	2.072620
86	1	0	6.257055	5.297549	-0.416558
87	1	0	11.621414	-1.727026	-2.282732
88	1	0	8.051165	5.786979	1.235634

E(HF) = - 3044.0076903 Hartree

BTD 2g

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	16	0	0.165395	1.532582	-3.200047
2	7	0	-1.132480	1.526429	-2.202156
3	7	0	1.371602	1.556538	-2.093548
----------	---------	--------	----------------------	------------------------	----------------------
4	6	0	-0.656250	1.562829	-0.953683
5	6	0	0.792923	1.564305	-0.888671
6	6	0	1.469710	1.575616	0.380542
7	6	0	0.663814	1.550649	1.505319
8	1	0	1.117082	1.528096	2.489227
9	6	0	-0.754696	1.531941	1.440356
10	1	0	-1.304538	1.519769	2.375271
11	6	0	-1.444627	1.565787	0.244482
12	6	0	2.945433	1.571097	0.469332
13	6	0	3.707959	0.674782	-0.461612
14	6	0	3.628392	2.305988	1.402658
15	6	0	4.518944	1.250391	-1.410556
16	6	0	3.463396	-0.751876	-0.293616
17	6	0	5.048183	2.178270	1.576267
18	6	Ũ	3.008209	3,243914	2,294322
19	6	Ũ	4.585318	2.668525	-1.599761
20	6	Ũ	5 331929	0 490457	-2 309313
21	6	0 0	2 972062	-1 364536	0 921415
22	6	0	3 620095	-1 814005	-1 264060
22	7	0	6 190988	2 071812	1 763622
24	7 7	0	2 549675	4 008035	3 041643
25	7 7	0	4 654826	3 815603	-1 781761
26	7 7	0	6 011316	-0 102698	-3 045102
20	6	0	2 810939	-2 754220	0 687984
28	1	0	2.010555	-0 853750	1 85/38/
20	1	0	2.701000	-3 027052	-0 658486
29	1	0	2 070066	-3.027032 -1.702107	-2.275065
21	1	0	2.979000	-1./0310/	-2.275005
22	1	0	2.407309	-3.404210	-1 120276
22	1 26	0	1 002702	-3.999001	-1.130370
21	20	0	4.003703	-2.191044	0.393313
34 25	6	0	0.333023	-3.391009	0.342699
30	6	0	0./014U1 5.051462	-2.304237	-0.234092
0C 7	0	0	5.951465	-3.333221	1.093030 0.166550
20	1 C	0	6.200340	-4.040007	-0.166559
30	0	0	0.079923	-1.350131	0.763902
39	1 C	0	7.098128	-2.214/32	-1.250037
40	0	0	6.16470Z	-1.945373	1.953645
41	1	0	5.542587	-4.055316	2.38/468
42	1	0	6.915462	-0.302394	0.638921
43		0	5.955357	-1.428838	2.880036
44	6	0	-2.926806	1.5/5845	0.21/432
45	6	0	-3.611987	0.494063	0.9991/6
46	6	0	-3.646928	2.499916	-0.481934
47	6	0	-4.213377	0.835656	2.190828
48	6	U	-3.488036	-0.843938	0.444618
49	6	0	-3.043731	3.600479	-1.17/119
50	6	0	-5.080175	2.448734	-0.548125
51	6	0	-4.171183	2.173470	2.702142
52	6	0	-4.916495	-0.101656	3.011845
53	6	0	-3.156682	-1.123541	-0.937163
54	6	0	-3.637970	-2.123348	1.108851

55	7	0	-2.586806	4.515224	-1.729857
56	7	0	-6.239392	2.415497	-0.631898
57	7	0	-4.126935	3.247740	3.148033
58	7	0	-5.500537	-0.845218	3.690594
59	6	0	-3.077204	-2.529232	-1.098138
60	1	0	-3.001391	-0.384248	-1.710450
61	6	0	-3.364149	-3.141519	0.160033
62	1	0	-3.897850	-2.279993	2.143679
63	1	0	-2.875106	-3.047565	-2.024997
64	1	0	-3.409344	-4.204373	0.353268
65	26	0	-4.991460	-1.978149	-0.447081
66	6	0	-6.593494	-3.285116	-0.605869
67	6	0	-6.905860	-2.248122	0.325802
68	6	0	-6.330207	-2.678481	-1.871272
69	1	0	-6.529096	-4.341311	-0.382848
70	6	0	-6.840919	-1.003815	-0.367839
71	1	0	-7.116392	-2.375696	1.378539
72	6	0	-6.480704	-1.266389	-1.722914
73	1	0	-6.035294	-3.195750	-2.774075
74	1	0	-6.998854	-0.023091	0.058393
75	1	0	-6.331800	-0.522218	-2.492830

E(HF) = - 2804.8308431 Hartree