Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

Anion Functionalized Ionic liquid From Artificial Sugar: A Sustainable Pathway for Diverse Bis-enol Derivatives

Himani Sharma,^a Suman Srivastava^{*a}

^aDepartment of Applied Sciences, National Institute of Technology, Delhi. NILERD campus, Sec A-7, Narela, Delhi, India, 110040

*Corresponding author: Suman Srivastava

E-mail address: sumanbhu08@gmail.com

Title page	1
General remarks	2
General experimental procedure	2
Experimental data of all products	3-13
¹ H NMR Spectra of selected products	14-27
References	28

General remarks:

Chemical and Instrument: All of the reagents purchased were of AR grade and used without further purification. Melting points were detected with a Stuart SMP30 Melting Point Measurer (Designed in UK) without correction; ¹H spectra were recorded on Jeol JNM ECX 500 MHz spectrometer in CDCl₃ and DMSO-d₆.

Typical experimental procedure for the [Bmim]Sac¹: To a solution of 1-*n*-butyl-3methylimidazolium bromide [Bmim]Br 26.7g (0.122 mol) in 100 mL acetone at room temperature, Sodium Saccharinate 25.0 g (0.122 mol) was added and stirred for about 30h. The reaction mixture was then filtered through a plug of Celite. The volatiles were removed under reduced pressure overnight and yield of 32.0 g (96%) of viscous oil was obtained.

General procedure for the synthesis of Biscoumarin / Bispyranylmethane / Tetraketones: In a 50 ml round bottom flask, mixture of substituted aldehyde (1.0 mmol), 4-hydroxy coumarin / 4-hydroxy-6-methyl-2-pyrone / dimedone / 1,3-cyclohexanedione (2.0 mmol) and Bmim(Sac) (10 mol%), was stirred at 80°C in water (2 ml) for time specified in Table 2. After completion of the reaction as monitored by TLC, the obtained solid precipitate was collected by filtration or the reaction mixture was extracted with ethyl acetate and water (in case of no precipitate). Then, the crude product was purified by recrystallization from EtOH.

Reusability of the [Bmim]Sac: The reusability of [Bmim]Sac was investigated from the reaction between benzaldehyde and 4-hydroxycoumarin as a model system. After completion of the reaction, precipitates separated out in the reaction mixture were filtered and aqueous layer containing catalyst was recovered under reduced pressure, dried, and reused for additional five times for subsequent reactions.

Experimental data of all products:

[Bmim][Sac]¹:

viscous oil (86%) ¹H NMR (300 MHz, DMSO- d_6 ,) $\delta = 9.17$ (s, 1H, ArH), 7.89 (d, J = 5.4Hz, 1H, ArH), 7.78 (d, J = 2.0Hz, 4H, ArH), 7.71(s, 1H, ArH), 4.18 (t, 2H, J = 7.2Hz, NCH₂), 3.85(s, 3H, CH₃), 1.80 (m, 2H, CH₂), 1.28 (m, 2H, CH₂), 0.90 (t, 3H, J = 7.3 Hz, CH₃); ¹³C NMR (75 MHz, DMSO d_6) $\delta = 164.7$, 142.5, 136.5, 133.0, 131.5, 123.5, 122.2, 120.0, 48.4, 35.7, 31.3, 18.7, 13.2.

3,3'-(Phenylmethylene)bis(4-hydroxy-2H-chromen-2-one) 4a²:

White solid, m. p. 230-232 °C; ¹H NMR (500MHz, DMSO- d_6): $\delta = 6.21$ (s, 1H, CH), 7.00-7.23(m, 8H, ArH), 7.44-7.48(m, 2H, ArH), 7.75-7.77 (m, 3H, ArH), Anal. Calcd. C₂₅H₁₆O₆: C, 72.81; H, 3.91. Found: C, 72.65; H, 3.97.

3,3'-((4-Chlorophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) 4b²:

White solid, m. p. 242-245 °C; ¹H NMR (500MHz, CDCl₃): δ = 6.03(s, 1H, CH), 7.14- 7.15 (m, 2H, ArH), 7.27-7.29 (d, *J*= 8.65Hz, 2H, ArH), 7.39-7.42 (m, 4H, ArH), 7.61-7.63 (m, 2H, ArH),

7.98-8.07 (m, 2H, ArH), 11.31 (brs, 1H, OH), 11.53 (brs, 1H, OH). Anal. Calcd. C₂₅H₁₅ClO₆: C, 67.20; H, 3.38. Found: C, 67.02; H, 3.51.

3, 3'-(p-Tolylmethylene)bis(4-hydroxy-2H-chromen-2-one) 4c²:

White solid, m. p. 263-265°C; ¹H NMR (500MHz, CDCl₃): $\delta = 2.32$ (s, 3H, CH₃), 6.05 (s, 1H, CH), 7.08-7.12 (m, 4H, ArH), 7.39 (d, *J*= 8.30Hz, 4H, ArH), 7.59-7.63 (m, 2H, ArH), 7.96-8.05(m, 2H, ArH), 11.50 (brs, 2H, OH); Anal. Calcd. C₂₆H₁₈O₆: C, 73.23; H, 4.25. Found: C, 73.10; H, 4.30.

3,3'-((2-Nitrophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) 4d:

Pale yellow solid; m. p. 106-108°C; ¹H NMR (500 MHz, CDCl₃): δ = 6.61 (s, 1H, CH), 7.38-7.45 (m, 6H, ArH), 7.53-7.65 (m, 4H, ArH), 7.96-8.07 (m, 2H, ArH), 11.54 (br s, 2H, OH); Anal. Calcd. C₂₅H₁₅NO₈: C, 65.65; H, 3.31; N, 3.06. Found: C, 65.49; H, 3.49; N, 3.14.

3,3'-((4-Bromophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) 4e²:

White solid, m. p. 260-262°C; ¹H NMR (500MHz, CDCl₃): $\delta = 6.01$ (s, 1H, CH), 7.08 (dd, J = 13.5Hz, 2H, ArH), 7.36-7.49 (m, 8H, ArH), 7.61-7.65 (m, 2H, ArH), 11.53 (brs, 2H, OH); Anal. Calcd. C₂₅H₁₅BrO₆: C, 61.12; H, 3.08. Found: C, 61.02; H, 3.17.

3, 3'-((4-Fluorophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) 4f:

White solid, m. p. 213-216°C; ¹H NMR (500MHz, CDCl₃): $\delta = 6.04$ (s, 1H, CH), 6.98-7.02 (t, *J*= 8.7Hz, 2H, ArH), 7.16(dd, *J*= 5.2Hz, 2H, ArH), 7.36-7.41 (m, 4H, ArH), 7.61-7.64 (m, 2H, ArH), 7.98-8.07 (m, 2H, ArH), 11.31 (br s, 1H, OH); 11.53 (br s, 1H, OH); Anal. Calcd. C₂₅H₁₅FO₆: C, 69.77; H, 3.51. Found: C, 69.65; H, 3.62.

3,3'-((3-Nitrophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) 4g⁴ :

White solid, m. p. 125-127°C; ¹H NMR (500 MHz, CDCl₃): δ= 6.12 (s, 1H, CH), 7.38-7.44 (m, 4H, ArH), 7.49-7.57 (m, 2H, ArH), 7.65-7.68 (m, 2H, ArH), 7.82-8.15 (m, 4H, ArH), 11.57(br s, 2H, OH); Anal. Calcd. C₂₅H₁₅NO₈: C, 65.65; H, 3.31; N, 3.06. Found: C, 65.53; H, 3.38; N, 3.11

3,3'-((4-Nitrophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) 4h²:

Yellow solid, m. p. 242-244 °C; ¹H NMR (500MHz, CDCl₃): $\delta = 6.45$ (s, 1H, CH), 7.32-7.44 (m, 4H, ArH), 7.47 (d, J = 8.4 Hz, 2H, ArH), 7.62 (d, J = 8.0 Hz, 2H, ArH), 7.93 (d, J = 8.0 Hz, 2H, ArH), 8.13 (d, J = 8.8 Hz, 2H, ArH), 11.51 (brs, 2H, OH); Anal. Calcd. C₂₅H₁₅NO₈: C, 65.65; H, 3.31; N, 3.06. Found: C, 65.51; H, 3.39; N, 3.12.

3,3'-((4-Methoxyphenyl)methylene)bis(4-hydroxy-2H chromen-2-one) 4i²:

White solid, m. p. 228-230°C; ¹H NMR (500MHz, CDCl₃): $\delta = 3.78$ (s, 3H, CH₃), 6.03 (s, 1H, CH), 6.82 (d, J = 8.9 Hz, 2H, ArH), 7.10 (d, J = 8.2Hz, 2H, ArH), 7.38 (d, J = 8.2 Hz, 4H, ArH), 7.59-7.64 (m, 2H, ArH), 7.98-8.04 (m, 2H, ArH), 11.51 (brs, 2H, OH); Anal. Calcd. C₂₆H₁₈O₇: C, 70.58; H, 4.10. Found: C, 70.48; H, 4.18.

3,3'-(Thiophen-2-ylmethylene)bis(4-hydroxy-2H-chromen-2-one) 4j²:

Yellow solid, m. p. 211-213 °C; ¹H NMR (500MHz, DMSO- d_6): $\delta = 6.19$ (s, 1H, CH), 6.85-6.94(m, 2H, ArH), 7.20(d, J= 5.0Hz, 1H, ArH), 7.39 (d, J= 8.2Hz, 4H, ArH), 7.61-7.62 (m, 2H, ArH), 8.00-8.06(m, 2H, ArH), 11.29 (br s, 1H, OH), 11.79 (br s, 1H, OH); Anal. Calcd. C₂₃H₁₄O₆S: C, 66.02; H, 3.37. Found: C, 66.09; H, 3.32.

3,3'-(Furan-2-ylmethylene) bis(4-hydroxy-2H-chromen-2-one) 4k²:

Off-white solid, m. p. 201-203°C; ¹H NMR (500MHz, DMSO-d₆): $\delta = 5.96$ (m, 1H, FuranCH), 6.19 (s, 1H, CH), 6.26(m, 1H, FuranCH), 7.23-7.30 (m, 4H, ArH), 7.39 (m, 1H, ArH), 7.51-7.55 (m, 2H, ArH), 7.85 (d, J = 10.0 Hz, 2H, ArH); Anal. Calcd. C₂₃H₁₄O₇: C, 68.66; H, 3.51. Found: C, 68.54; H, 3.63.

3,3'-(Butane-1,1-diyl)bis(4-hydroxy-2H-chromen-2-one) 4l²:

White solid, m. p. 119-123 °C; ¹H NMR (500MHz, DMSO- d_6): $\delta = 0.90$ (t, 3H, CH₃), 1.25-1.31 (m, 2H, CH₂), 2.13 (q, J = 7.2 Hz, 2H, CH₂), 4.96 (d, J = 8.0 Hz, 1H, CH), 7.38-7.41 (m, 4H, ArH), 7.63 (t, J = 7.2 Hz, 2H, ArH), 7.99 (d, J = 7.2 Hz, 2H, ArH), 11.97 (brs, 2H, OH); Anal. Calcd. C₂₂H₁₈O₆: C, 69.83; H, 4.79. Found: C, 69.74; H, 4.88.

3,3'-((4-(Dimethylamino)phenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) 4m:

Pink solid, m. p. 223-225°C; ¹H NMR (500MHz, DMSO-*d*₆): δ = 3.09 (s, 6H, 2xCH₃), 6.24 (s, 1H, CH), 7.18-7.24 (m, 6H, ArH), 7.46-7.48(m, 4H, ArH), 7.37(s, 2H, ArH), 7.76-7.77 (m, 2H, ArH).

3,3'-((2-Nitrophenyl)methylene)bis(4-hydroxy-6-methyl-2H-pyran-2-one) 4n:

White solid, m. p. 224-226°C; ¹H NMR (500MHz, DMSO-*d6*): δ = 2.10 (s, 6H, 2xCH₃), 5.89 (s, 2H, CH), 5.99 (s, 1H, CH), 7.19 (d, *J*= 7.9Hz, 1H, ArH), 7.33 (t, *J*= 7.6Hz, 1H, ArH), 7.46(t, *J*= 7.9Hz, 1H, ArH), 7.68(d, *J*= 8.8Hz, 1H, ArH), 11.25 (br s, 2H, OH); Anal. Calcd. C₁₉H₁₅NO₈: C, 59.22; H, 3.92. Found: C, 59.17; H, 3.97.

3,3'-((3-Nitrophenyl)methylene)bis(4-hydroxy-6-methyl-2H-pyran-2-one) 40:

White solid, m. p. 202-204°C; ¹H NMR (500MHz, CDCl₃): $\delta = 2.31$ (s, 6H, CH₃), 5.78 (s, 1H, CH), 6.06 (m, 2H, CH), 7.49 (s, 2H, ArH), 7.99-8.10 (m, 3H, ArH), 10.99 (br s, 2H, OH). Anal. Calcd. C₁₉H₁₅NO₈: C, 59.22; H, 3.92. Found: C, 59.15; H, 3.98.

3,3'-((4-Nitrophenyl)methylene)bis(4-hydroxy-6-methyl-2H-pyran-2-one) 4p:

White solid, m. p. 234-236°C; ¹H NMR (500MHz, CDCl₃): $\delta = 2.30$ (s, 6H, 2xCH₃), 5.77 (s, 1H, CH), 6.05-6.14 (m, 2H, CH), 7.31 (d, *J*= 5.2Hz, 2H, ArH), 8.15 (d, *J*= 8.8Hz, 2H, ArH), 10.96 (br s, 2H, OH); Anal. Calcd. C₁₉H₁₅NO₈: C, 59.22; H, 3.92. Found: C, 59.13; H, 3.96.

3,3'-(4-Methoxyphenyl)methylenebis(4-hydroxy-6-methyl-2H-pyran-2-one) 4q³ :

Yellow powder, m. p. 173-175°C; ¹H NMR (500 MHz, DMSO- d_6) : $\delta = 2.07$ (s, 6H, 2xCH₃), 3.69 (s, 3H, OCH₃), 5.63 (s, 2H, CH), 5.81 (s, 1H, CH), 6.71 (d, *J*=8.5 Hz, 2H, ArH), 6.89 (d, *J*= 8.5 Hz, 2H, ArH); Anal. Calcd. C₂₀H₁₈O₇: C, 64.86; H, 4.90. Found: C, 64.78; H, 4.98.

2,2'-((4-Chlorophenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone): 4r⁵

White solid, m. p. 140-142°C; ¹H NMR (500MHz, CDCl₃): δ = 1.08 (s, 6H, 2xCH₃), 1.20 (s, 6H, 2xCH₃), 2.27-2.46 (m, 8H, CH₂), 5.45 (s, 1H, CH), 6.99 (d, *J*= 7.85Hz, 2H, ArH), 7.23 (d, *J*= 8.65Hz, 2H, ArH), 11.86 (s, 1H, OH); Anal. Calcd. C₂₃H₂₇ClO₄: C, 68.56; H, 6.75. Found: C, 68.42; H, 6.87.

2,2'-((4-Nitrophenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone): 4s⁶

Yellow solid , m. p. 188-189°C; ¹H NMR (500 MHz, CDCl₃): δ = 1.10 (s, 6H, 2xCH₃), 1.22 (s, 6H, 2xCH₃), 2.27-2.49 (m, 8H, 4xCH₂), 5.53 (s, 1H, CH), 7.22 (t, *J*= 8.55Hz, 2H, ArH), 8.11 (d, *J* = 8.85 Hz, 2H, ArH), 11.79 (br s, 2H, OH); Anal. Calcd. C₂₃H₂₇NO₆: C, 66.81; H, 6.58. Found: C, 66.72; H, 6.64.

2,2'-((4-Methoxyphenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) 4t⁶ :

White solid, m. p. 140-142°C; ¹H NMR (500 MHz, CDCl₃): δ = 1.09 (s, 6H, 2xCH₃), 1.22 (s, 6H, 2xCH₃), 2.51-2.28 (m, 8H, 4xCH₂), 3.76 (s, 3H, OCH₃), 5.49 (s, 1H, CH), 6.80 (d, *J* = 8.7 Hz, 2H, ArH), 6.99 (d, *J* = 8.3 Hz, 2H, ArH), 11.94 (s, 2H, OH); Anal. Calcd. C₂₄H₃₀O₅: C, 72.34; H, 7.59. Found: C, 72.22; H, 7.67.

2,2'-(Thiophen-2-ylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone)4u:

White solid, m. p. 112-114°C, ¹H NMR (500 MHz, CDCl₃): δ = 1.09 (s, 6H, 2xCH₃), 1.20 (s, 6H, 2xCH₃), 2.25-2.39 (m, 8H, CH₂), 5.61 (s, 1H, CH), 6.62 (d, 1H, *J*= 3.2Hz, ArH), 6.85 (t, 1H, *J*= 5.0Hz, ArH), 7.11 (d, 1H, *J*= 5.2Hz, ArH), 12.31 (s, 2H, OH). Anal. Calcd. C₂₁H₂₆O₄S: C, 67.35; H, 7.00. Found: C, 67.20; H, 7.19.

2,2'-(Butane-1,1-diyl)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone)4v:

White solid, m. p. 99-102 °C ¹H NMR (500 MHz, CDCl₃): δ = 0.84-1.05 (t, 3H, CH₃), 1.06 (s, 6H, 2xCH₃), 1.09 (s, 6H, 2xCH₃), 1.17-1.20 (m, 2H, CH₂), 1.95-1.99 (m, 2H, CH₂), 2.25-2.27 (m, 8H, 4xCH₂), 3.90-3.94 (m, 1H, CH), 12.48 (s, 1H, OH). Anal. Calcd. C₂₀H₃₀O₄: C, 71.82; H, 9.04. Found: C, 71.69; H, 9.20.

2,2'-((4-Hydroxyphenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone): 4w

White solid, m. p. 194-196°C; ¹H NMR (500 MHz, CDCl₃): δ = 0.98 (s, 6H, 2xCH₃), 1.08 (s, 6H, 2xCH₃), 2.15-2.28 (m, 4H, 2xCH₂), 2.45 (s, 4H, 2xCH₂), 4.65 (s, 1H, CH), 6.54 (d, *J* = 8.55Hz, 2H, ArH), 7.07 (d, *J* = 8.6 Hz, 2H, ArH). Anal. Calcd. C₂₃H₂₈O₅: C, 71.85; H, 7.34. Found: C, 71.70; H, 7.51.

2,2'-((2-Hydroxyphenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone): 4x

White solid, m. p. 120-133°C; ¹H NMR (500 MHz, CDCl₃): δ = 0.97 (s, 6H, 2xCH₃), 1.01 (s, 3H, CH₃), 1.11 (s, 3H, CH₃), 1.90-1.99 (m, 2H, CH₂), 2.28-2.60 (m, 6H, 3xCH₂), 4.65 (s,1H, CH), 6.97-7.03 (m, 3H, ArH), 7.12-7.16 (m, 1H, ArH), 10.47(s, 1H, OH).Anal. Calcd. C₂₃H₂₈O₅: C, 71.85; H, 7.34. Found: C, 71.72; H, 7.48.

2,2'-((4-Bromophenyl)methylene)bis(3-hydroxycyclohex-2-enone): 4y7

White solid; m. p. 226-228°C; ¹H NMR (400 MHz, CDCl₃): δ = 1.96-2.07 (m, 4H, CH₂), 2.33-2.50 (m, 4H, CH₂), 2.52-2.69 (m, 4H, CH₂), 5.39 (s, 1H, CH), 6.98 (d, 2H, *J* = 8.0 Hz, ArH), 7.38 (t, 2H, *J* = 7.8 Hz, ArH), 12.32 (br s, 2H, OH); Anal. Calcd. C₁₉H₁₉BrO₄: C, 58.33; H, 4.89. Found: C, 58.23; H, 4.95.

2,2'-((3-Nitrophenyl)methylene)bis(3-hydroxycyclohex-2-enone): 4z⁷

Sand yellow solid, m. p. 205-207°C; ¹HNMR (500 MHz, CDCl₃): δ = 2.04-2.12 (m, 4H, CH₂), 2.35-2.55 (m, 4H, CH₂), 2.58-2.73 (m, 4H, CH₂), 5.49 (s, 1H, CH), 7.41-7.47 (m, 2H, ArH), 7.97 (s, 1H, ArH), 8.05 (d, *J* = 8.0 Hz, 1H, ArH), 12.31 (br s, 2H, OH); Anal. Calcd. C₁₉H₁₉NO₆: C, 63.86; H, 5.36; N, 3.92. Found: C, 63.72; H, 5.39; N, 3.97.

2,2'-((4-Methoxyphenyl)methylene)bis(3-hydroxycyclohex-2-enone): 4a'7

Light yellow solid, m. p. 192-194°C; ¹H NMR (500 MHz, CDCl₃): δ = 1.93-2.68 (m, 4H, 2xCH₂), 2.32-2.51 (m, 4H, 2xCH₂), 2.52-2.69 (m, 4H, 2xCH₂), 3.78 (s, 3H, OCH₃), 5.43 (s, 1H, CH), 6.81 (d, *J* = 8.8 Hz, 2H, ArH), 7.01 (t, *J*=8.4Hz, 2H, ArH), 12.36 (br s, 2H, OH); Anal. Calcd. C₂₀H₂₂O₅: C, 70.16; H, 6.48. Found: C, 70.02; H, 6.59

Fig 1.1H NMR of [Bmim]Sac

Fig 2. ¹³C NMR of [Bmim]Sac

Fig 3.¹H NMR of [Bmim]Sac recovered after 3th cycle

Fig 4.¹H NMR of [Bmim]Sac recovered after 5th cycle

Fig 5. IR of [Bmim]Sac

Fig 6.IR of [Bmim]Sac recovered after 5th cycle

Figure 7. ¹H NMR of 4a in CDCl₃

Figure 8. ¹H NMR of 4b 8 in CDCl₃

Figure 9. ¹H NMR of 4c in CDCl₃

Figure 10. ¹H NMR of 4d in CDCl₃

Figure 11. ¹H NMR of 4e in CDCl₃

Figure 12. ¹H NMR of 4f in CDCl₃

Figure 13. ¹H NMR of 4g in CDCl₃

Figure 14. ¹H NMR of 4i in CDCl₃

Figure 16. ¹H NMR of 4k in DMSO-d₆

Figure 18. ¹H NMR of 4n in DMSO-d₆

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

Figure 20. ¹H NMR of 4p in CDCl₃

Figure 22. ¹H NMR of 4s in CDCl₃

Figure 23. ¹H NMR of 4u in CDCl₃

Figure 24 ¹H NMR of 4v in CDCl₃

Figure 25. ¹H NMR of 4w in CDCl₃

Figure 26. ¹H NMR of 4x in CDCl₃

References:

- 1. A. Kumar, S. Srivastava, G. Gupta, P. Kumar, J. Sarkar, RSC Adv, 2013, 3, 3548-3552;
- 2. C. Yang, W.-Q. Su, and D-Z. Xu, RSC Adv., 2016, 6, 99656.
- 3. M. Proud, V. Sridharan, Tetrahedron Letters, 2015, 56, 6614-6616.
- 4. R. Rezaei, F. Moezzi, M.M. Doroodmand, *Chinese Chemical Letters* 2014, 25, 183–186X.
- 5. Gerd Kaupp,* M. Reza Naimi-Jamal and Jens Schmeyers, Tetrahedron **2003**, 59, 3753–3760.
- 6. Tsai-Wen Chung, Bharat D. Narhe, Chun-Cheng Lin, Chung-Ming Sun Org. Lett., 2015, 17 (21), 5368–5371
- Jian-Jun Yu, Li-Min Wang,* Jin-Qian Liu, Feng-Lou Guo, Ying Liu and Ning Jiao, *Green Chem.*, 2010,12, 216-219