Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

A surface carbonization strategy to MoS₂ microspheres for enhancing

electrochemical hydrogen evolution activity

Chengwei Fei,[†] Lixia Cui,[†] Haiwei Du,* Lina Gu,* Gengsheng Xu and Yupeng Yuan School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China *Corresponding authors Email: haiwei.du@ahu.edu.cn (H. Du) and gulina77@sina.com (L. Gu)

[†]These authors contributed equally to this work.

Fig. S1 SEM image with a low magnification (a) of MD-1:1 and EDX spectrum (b). Si and Au are from silicon substrate and conductive coating respectively.

Fig. S2 Bright-field TEM image and elemental mapping of Mo, S, C and N in MD-1:1.

Fig. S3 N₂ adsorption-desorption isotherm of MoS₂ and MD-1:1.

Fig. S4 The C 1s (a) and N 1s (b) spectra of MoS_2 and NC decorated MoS_2 . The peak at 396 corresponds to Mo $3p_{3/2}$.

Fig. S5 CV curves (a-e) of the electrocatalysts at different scan rates in 1 M KOH.

Fig. S6 XRD patterns of MD-1:1 catalyst before and after long-term HER test under alkaline condition (1 M KOH).

Fig. S7 CV curves of MoS₂ (a) and MD-1:1 (b) at different scan rates in 0.5 M H₂SO₄.

Catalysts	Electrolyte	Current density @ 300 mV (mA cm ⁻²)	Ref.
MoS ₂ nanosheet-	0.5 M H ₂ SO ₄	-0.508	[1]
C ₃ N ₄ heterojunction			
$(PMo_{12}/MoS_2)_4$ ^a	0.5 M H ₂ SO ₄	-0.499	[2]
Ni-doped MoS ₂	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	-2.368	[3]
Ta-doped MoS ₂	0.5 M H ₂ SO ₄	-0.205	[4]
NC decorated MoS ₂	$0.5 \text{ M H}_2\text{SO}_4$	-3.172	This work

Table S1 Comparison of the HER performance of various MoS₂-based electrocatalysts.

^a Treated by oxygen plasma treatment for 15 min.

References

- [1] Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian, X. Xu, X. Duan, H. Sun, M. O. Tade and S. Wang, *Appl. Catal. B*, 2018, **228**, 64-74.
- [2] J. Huang, X. Deng, H. Wan, F. Chen, Y. Lin, X. Xu, R. Ma and T. Sasaki, ACS Sustain. Chem. Eng., 2018, 6, 5227-5237.
- [3] H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov and Y. Cui, *Nano Res.*, 2015, 8, 566-575.
- [4] X. J. Chua, J. Luxa, A. Y. S. Eng, S. M. Tan, Z. k. Sofer and M. Pumera, *ACS Catal.*, 2016, 6, 5724-5734.