Electronic supplementary information

High-level nitrogen-doped, micro/mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction: optimizing reaction surface area by a solvent-free mechanochemical method

Wendu Zhang, Jiawei Qi, Peiyao Bai, Huifen Wang and Lang Xu*

MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu, 221116, China

*Corresponding author. E-mail address: lang.xu@cumt.edu.cn (L. Xu)

Material	$\frac{S_{BET}}{(m^2 g^{-1})}$	$V_{micropores}$ (cm ³ g ⁻¹)	$V_{effective micropores} \ (cm^3 g^{-1})$	V _{mesopores} (cm ³ g ⁻¹)
СМС	48.8	0.014		0.011
РСМС	1978.4	0.68	0.39	0.11
NCMC	38.4	0.011		0.016
NPCMC	1675.7	0.49	0.31	0.23

Table S1 Pore textural properties of CMC, PCMC, NCMC and NPCMC. [a]

^[a] S_{BET} : BET specific surface area; $V_{micropores}$: micropore volume; $V_{effective micropores}$: volume of the effective micropores (pore width > 0.7 nm); $V_{mesopores}$: mesopore volume.

Table S2 XPS analyses of CMC, PCMC, NCMC and NPCMC.

Material	C (at%)	N (at%)	O (at%)
СМС	91.56	1.10	6.95
PCMC	92.68	_	7.32
NCMC	79.57	14.73	4.92
NPCMC	83.23	11.55	5.23

Fig. S1 a) High-resolution XPS N 1s spectrum of NCMC. High-resolution XPS C 1s spectra of CMC (b) and PCMC (c).

Fig. S2 CV curves of CMC (a), PCMC (b), NCMC (c) and NPCMC (d) at a scan rate of 50 mV s⁻¹

in N_2 (black) and O_2 (red) saturated 0.1 M KOH aqueous solutions at 25 $^{\circ}\text{C}.$

Fig. S3 LSV curves of CMC (a), PCMC (c) and NCMC (e) at different rotation rates (400, 625, 900, 1225, 1600 and 2025 rpm) with a sweep rate of 10 mV s⁻¹ in 0.1 M KOH aqueous solution at 25 °C. K-L plots of CMC (b), PCMC (d) and NCMC (f) in the potential range from 0.2 to 0.6 V *vs*. RHE.