Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Copper-amidocarboxylate Based Metal Organic Macrocycle and Framework: Synthesis, Structure and Catalytic Activities towards Microwave assisted Alcohol Oxidation and Knoevenagel reaction

Anirban Karmakar^{1,*} Mohamed M.A. Soliman¹, Elisabete C.B.A. Alegria,^{1,2} Guilherme M. D. M. Rúbio,¹ M. Fátima C. Guedes da Silva¹ and Armando J. L. Pombeiro^{1,*}

¹Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal. E-mail: <u>anirbanchem@gmail.com</u>; <u>pombeiro@tecnico.ulisboa.pt.</u>
²Chemical Engineering Departament, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal.

Figure S1 A) FT-IR spectra of **1** before (in black), after oxidation of alcohol (in blue) and Knoevenagel condensation of aldehyde (in red). B) Powder XRD diffractograms of **1** simulated (in black), as synthesized (in pink) and after catalytic oxidation of alcohol (in blue) and Knoevenagel condensation of aldehyde (in red).

Figure S2 A) FT-IR spectra of **2** before (in black), after oxidation of alcohol (in blue) and Knoevenagel condensation of aldehyde (in red). B) Powder XRD diffractograms of **2** simulated (in black), as synthesized (in pink) and after catalytic oxidation of alcohol (in blue) and Knoevenagel condensation of aldehyde (in red).

Table S1: Crystal data and structure refinement details						
	1	2				
Formulae	$C_{49}H_{51}Cu_4N_9O_{25}$	$C_{27}H_{27}CuN_5O_8$				
Mol. wt.	1420.15	613.07				
Crystal system	Triclinic	Monoclinic				
Space group	P-1	P2 ₁ /n				
Temperature /K	296	296				
Wavelength /Å	0.71073	0.71073				
a /Å	8.8368(5)	9.1236(8)				
b/Å	9.9857(6)	15.7177(14)				
c /Å	16.3956(9)	19.9209(17)				
α/°	91.165(2)	90				
β/°	103.967(2)	93.270(2)				
γ/°	92.411(2)	90				
V/ Å ³	1402.06(14)	2852.0(4)				
Z	1	4				
Density/Mgm ⁻³	1.682 1.428					
Abs. Coeff. /mm ⁻¹	1.591 0.823					
F(000)	724	1268				
Refl. collected	30829	45098				
Refl. unique	5744	5202				
Мах. 20/°	26.426	25.382				
Complete to 2θ (%)	99.6	99.8				
Refl. with $I > 2\sigma(I)$	4556	3161				
Data/Restraints/Parameters	5744/131/404	5202/18/334				
Goof (F ²)	1.037 1.001					
R1 [I > 2s(I)]	0.0466 0.0541					
wR2 [I > 2s(I)]	0.1195	0.1104				
R1 [all data]	0.0621	0.1089				
wR2 [all data]	0.1304	0.1314				

Table S2: Selected bond distances (Å) and angles (°) for compounds 1-2

1	Cu1-O2, 1.911(2); Cu1-O6, 1.927(2); Cu1-O7, 1.967(3); Cu1-O7, 2.000(3); Cu1-O9, 2.428(4); Cu1-
	Cu1', 2.9391(8); Cu2-O5, 1.920(3); Cu2-O1, 1.934(2); Cu2-O7, 1.957(3); Cu2-O8, 1.975(3); Cu2-
	010A, 2.375(9); 01-Cu2, 1.934(2); 01-Cu2A, 1.940(5); 07-Cu2A, 1.775(5); 07-Cu1, 2.000(3); 08-
	Cu2A, 2.406(6); O5-Cu2A, 2.019(5)
	<pre><02-Cu1-06, 86.65(10); <02-Cu1-07, 177.45(10); <06-Cu1-07, 95.73(11) ; <02-Cu1-07,</pre>
	93.60(11); <o6-cu1-o7, 163.77(13);="" 84.39(12);="" 92.88(14);="" <o2-cu1-o9,="" <o6-cu1-<="" <o7-cu1-o7',="" th=""></o6-cu1-o7,>
	09, 94.57(15); <07-Cu1-09, 86.00(14); <07-Cu1-09, 101.63(14); <02-Cu1-Cu1', 135.33(8); <06-
	Cu1-Cu1', 136.07(8); <o7-cu1-cu1', 41.76(7);="" 42.63(8);="" 95.19(10);<="" <o7-cu1-cu1',="" <o9-cu1-cu1',="" th=""></o7-cu1-cu1',>
	<pre><cu2a-cu2-o5, 158.77(14);="" 80.1(4);="" 87.9(4);="" <cu2a-cu2-o1,="" <cu2a-cu2-o7,<="" <o5-cu2-o1,="" pre=""></cu2a-cu2-o5,></pre>
	64.7(4); <05-Cu2-O7 ,95.87(11); <01-Cu2-O7 ,94.76(10); <cu2a-cu2-o8 ,120.5(4);="" ,<="" <05-cu2-o8="" th=""></cu2a-cu2-o8>
	83.67(12); <01-Cu2-O8, 87.40(11); <07-Cu2-O8, 174.66(15); <cu2a-cu2-o10a, 144.8(7);="" <o5-<="" th=""></cu2a-cu2-o10a,>
	Cu2-O10A, 91.0(3); <o1-cu2-o10a, 108.9(3);="" 80.4(5);="" 94.3(5);<="" <o7-cu2-o10a,="" <o8-cu2-o10a,="" th=""></o1-cu2-o10a,>
	<pre><cu2a-07-cu1, 117.73(13);="" 123.9(2);="" 128.4(2);="" <cu2-07-cu1,="" <cu2-07-cu1,<="" <cu2a-07-cu1,="" pre=""></cu2a-07-cu1,></pre>
	114.02(14); <cu1-07-cu1, 79.1(5);="" 94.5(5);="" 95.61(12);="" <cu2-cu2a-01,="" <cu2-cu2a-07,="" <o7-<="" th=""></cu1-07-cu1,>
	Cu2A-O1, 100.7(2); <cu2-cu2a-o5, 146.2(3);<="" 71.9(4);="" 98.5(2);="" <o1-cu2a-o5,="" <o7-cu2a-o5,="" th=""></cu2-cu2a-o5,>
	<pre><cu2-cu2a-08, 139.5(3);="" 45.0(4);="" 76.0(2);="" <o1-cu2a-08,="" <o5-cu2a-08,<="" <o7-cu2a-08,="" pre=""></cu2-cu2a-08,></pre>
	71.31(18); <cu2-cu2a-h7o, 110.5(11);="" 120.4(8);="" 26.9(7);="" <o1-cu2a-h7o,="" <o5-<="" <o7-cu2a-h7o,="" th=""></cu2-cu2a-h7o,>
	Cu2A-H7O, 99.1(11); <o8-cu2a-h7o, 163.9(8);<="" th=""></o8-cu2a-h7o,>
2	Cu1-O1, 1.949(3); Cu1-O5, 1.953(3); Cu1-O2, 1.959(3); Cu1-O6, 1.970(3); Cu1-O7, 2.142(3); Cu1-
	Cu1', 2.6246(10).
	<pre><01-Cu1-O5, 87.98(14); <01-Cu1-O2, 168.82(13); <05-Cu1-O2, 89.30(13); <01-Cu1-O6,</pre>
	91.00(14); <05-Cu1-06, 168.69(12); <02-Cu1-06, 89.54(13); <01-Cu1-07, 94.51(14); <05-Cu1-
	07 93.89(13); <o2-cu1-o7, 84.14(10;="" 96.50(14);="" 97.42(12);="" <o1-cu1-cu1',="" <o5-<="" <o6-cu1-o7,="" th=""></o2-cu1-o7,>
	Cu1-Cu1', 82.80(9); <o2-cu1-cu1', 176.46(10).<="" 84.75(9);="" 85.89(9);="" <o6-cu1-cu1',="" <o7-cu1-cu1',="" th=""></o2-cu1-cu1',>

Table S3: Hydrogen bond geometry (Å, °) in compounds 1-2							
Compound	D-H…A	D…H (Å)	H…A (Å)	D…A (Å)	<d-h…a(°)< td=""></d-h…a(°)<>		
1	012-H120…04	0.82	1.95	2.766(3)	179.7		
	N1-H1N…O12	0.70(4)	2.36(4)	3.004(4)	154(5)		
	N1-H1N…N2	0.70(4)	2.31(4)	2.639(4)	110(4)		
	N3-H3N…N2	0.75(4)	2.18(4)	2.614(4)	118(4)		
	08-H8O…N4	0.866(19)	2.70(3)	3.481(6)	151(4)		
	08-H80…011	0.866(19)	2.30(3)	3.064(8)	147(4)		
	08-H80…010A	0.866(19)	2.57(4)	3.201(13)	130(4)		
	08-H8O…010B	0.866(19)	2.17(4)	2.93(2)	146(4)		
	07-H70…09	0.928(19)	2.45(3)	3.016(5)	119(3)		
	С7-Н7…О12	0.93	2.64	3.252(4)	124		
	C5-H5…O3	0.93	2.42	2.977(4)	118		
	С20-Н20…О4	0.93	2.41	2.981(4)	119		
	C22-H01E…O10A	0.96	2.52	3.064(9)	116		
	C22-H01E…O10B	0.96	2.81	3.170(2)	103		
	C22-H01F…O10B	0.96	2.58	3.150(3)	118		
2	N3-H3N…O3	1.06(9)	2.47(9)	3.290(5)	133(6)		
	N1 H1N N2	0.95(9)	2.23(9)	2.713(6)	111(7)		
	C5-H5…O3	0.93	2.29	2.833(7)	116.8		
	C24-H24A…O4	0.96	2.65	3.483(10)	145.5		