Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

First heterobimetallic Cu–dppf complexes designed for anticancer applications: synthesis, structural characterization and cytotoxicity

Catarina Bravo^{a,b}, M. Paula Robalo^{c,d}, Fernanda Marques^e, Alexandra R. Fernandes^f, Diogo A. Sequeira^f, M. Fátima M. Piedade^{b,c}, M. Helena Garcia^{a,b}, Maria J. Villa de Brito^{a,b*}, Tânia S. Morais^{a,b*}

^a Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal.

^b Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Portugal.

^c Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal.

^d Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal.

² UCBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.

Figure S1 - Evaluation of complex <u>4</u> stability by ¹H- (A) and ³¹P-NMR (B) over 24 h.

Figure S2 - Evaluation of the stability of complex <u>4</u> by UV-vis spectroscopy over 24 hours in 5%DMSO/ DMEM+GlutaMAX-I^M solution. (A) UV-visible spectra recorded over time, from 0 min up to 1440 min=24 h, for a 43 μ M solution; inset: changes in absorbance observed at 294 nm (\blacksquare); (B) absorbance variation percentage along time (0 min to 1440 min) (\blacklozenge).

Figure S3 - ¹H-NMR spectrum of [Cu(dppf)(NCMe)₂][BF₄] in CDCl3.

Figure S6 - HSQC-NMR spectrum of [Cu(dppf)(NCMe)₂][BF₄] in CDCl3.

Figure S7 - HMBC-NMR spectrum of [Cu(dppf)(NCMe)₂][BF₄] in CDCl3.

Figure S8 - 1 H-NMR spectrum of [Cu(dppf)(Me₂bpy)][BF₄](<u>1</u>) in CDCl3.

Figure S9 – cosy-NMR spectrum of $[Cu(dppf)(Me_2bpy)][BF_4](\underline{1})$ in CDCl3.

Figure S10 – ³¹P-NMR spectrum of [Cu(dppf)(Me₂bpy)][BF₄]($\underline{1}$) in CDCl3.

Figure S11 – 13 C-NMR spectrum of [Cu(dppf)(Me₂bpy)][BF₄](<u>1</u>) in CDCl3.

Figure S12 - HSQC-NMR spectrum of $[Cu(dppf)(Me_2bpy)][BF_4](\underline{1})$ in CDCl3.

Figure S13 - HMBC-NMR spectrum of $[Cu(dppf)(Me_2bpy)][BF_4](\underline{1})$ in CDCl3.

Figure S14 - 1 H-NMR spectrum of [Cu(dppf)(pbt)][BF₄](<u>2</u>) in CDCl3.

Figure S15 – cosy-NMR spectrum of $[Cu(dppf)(pbt)][BF_4](\underline{2})$ in CDCI3.

Figure S16 – ³¹P-NMR spectrum of [Cu(dppf)(pbt)][BF₄]($\underline{2}$) in CDCl3.

Figure S17 – ¹³C-NMR spectrum of [Cu(dppf)(pbt)][BF₄](<u>2</u>) in CDCl3.

Figure S18 - HSQC-NMR spectrum of [Cu(dppf)(pbt)][BF₄](<u>2</u>) in CDCl3.

Figure S19 - HMBC-NMR spectrum of [Cu(dppf)(pbt)][BF₄](<u>2</u>) in CDCl3.

Figure S20 - 1 H-NMR spectrum of [Cu(dppf)(bopy)][BF₄](<u>3</u>) in (CD₃)₂CO.

Figure S21 – cosy-NMR spectrum of $[Cu(dppf)(bopy)][BF_4](\underline{3})$ in $(CD_3)_2CO$.

Figure S22 – ³¹P-NMR spectrum of [Cu(dppf)(bopy)][BF₄](<u>3</u>) in (CD₃)₂CO.

Figure S23 – 13 C-NMR spectrum of [Cu(dppf)(bopy)][BF₄](<u>3</u>) in (CD₃)₂CO.

Figure S24 - HSQC-NMR spectrum of $[Cu(dppf)(bopy)][BF_4](\underline{3})$ in $(CD_3)_2CO$.

Figure S25 - HMBC-NMR spectrum of $[Cu(dppf)(bopy)][BF_4](\underline{3})$ in $(CD_3)_2CO$.

Figure S28 – ³¹P-NMR spectrum of $[Cu(dppf)(dpk)][BF_4](\underline{4})$ in $(CD_3)_2CO$.

75.17 74.95 74.74 74.74 77.20

-151.98 -150.22

-138.76 133.18 133.18 133.10 133.02 133.02 133.02 133.02 133.02 133.02 133.05 135.05 150.05 1

8.0

7.5

7.0 6.5 f2 (ppm)

6.0

5.5

5.0

4.0

4.5

Figure S30 - HSQC-NMR spectrum of [Cu(dppf)(dpk)][BF₄](<u>4</u>) in (CD₃)₂CO.

8.5

9.5

9.0

Figure S31 - HMBC-NMR spectrum of $[Cu(dppf)(dpk)][BF_4](\underline{4})$ in $(CD_3)_2CO$.

Figure S32 - ¹H-NMR spectrum of $[Cu(dppf)(dpp)][BF_4](\underline{5})$ in $(CD_3)_2CO$, T = -40°C.

Figure S33 – cosy-NMR spectrum of $[Cu(dppf)(dpp)][BF_4](\underline{5})$ in $(CD_3)_2CO$, T = -40°C.

Figure S36 - HSQC-NMR spectrum of $[Cu(dppf)(dpp)][BF_4](\underline{5})$ in $(CD_3)_2CO$, T = -40°C.

Figure S37 - HMBC-NMR spectrum of $[Cu(dppf)(dpp)][BF_4](\underline{5})$ in $(CD_3)_2CO$, T = -40°C.

Figure S38 - 1 H-NMR spectrum of [Cu(dppf)(pBI)][BF₄](<u>6</u>) in (CD₃)₂CO.

Figure S39 – cosy-NMR spectrum of $[Cu(dppf)(pBI)][BF_4](\underline{6})$ in $(CD_3)_2CO$.

Figure S40 – 31 P-NMR spectrum of [Cu(dppf)(pBI)][BF₄](<u>6</u>) in (CD₃)₂CO.

Figure S41 – 13 C-NMR spectrum of [Cu(dppf)(pBI)][BF₄](<u>6</u>) in (CD₃)₂CO.

Figure S42 - HSQC-NMR spectrum of [Cu(dppf)(pBI)][BF₄](<u>6</u>) in (CD₃)₂CO.

Figure S43 - HMBC-NMR spectrum of [Cu(dppf)(pBI)][BF₄](<u>6</u>) in (CD₃)₂CO.

Figure S46 – ³¹P-NMR spectrum of $[Cu(dppf)(dpytz)][BF_4](\underline{7})$ in $(CD_3)_2CO$.

Figure S47 – ¹³C-NMR spectrum of $[Cu(dppf)(dpytz)][BF_4](\underline{7})$ in $(CD_3)_2CO$.

Figure S48 - HSQC-NMR spectrum of [Cu(dppf)(dpytz)][BF₄](<u>7</u>) in (CD₃)₂CO.

Figure S49 - HMBC-NMR spectrum of [Cu(dppf)(dpytz)][BF₄](<u>7</u>) in (CD₃)₂CO.

Figure S50 - ¹H-NMR spectrum of [Cu(dppf)(5-Aphen)][BF₄](<u>8</u>) in (CD₃)₂CO.

Figure S51 – cosy-NMR spectrum of $[Cu(dppf)(5-Aphen)][BF_4](\underline{8})$ in $(CD_3)_2CO$.

Figure S53 - 13 HC-NMR spectrum of [Cu(dppf)(5-Aphen)][BF₄](<u>8</u>) in (CD₃)₂CO.

Figure S54 - HSQC-NMR spectrum of $[Cu(dppf)(5-Aphen)][BF_4](\underline{8})$ in $(CD_3)_2CO$.

Figure S55 - HMBC-NMR spectrum of [Cu(dppf)(5-Aphen)][BF₄](<u>8</u>) in (CD₃)₂CO.

Figure S56 - Cyclic voltammogram of ligand pbt (L2) in acetonitrile (scan rate:

Figure S58 - Cyclic voltammogram of ligand dpytz (L7) in acetonitrile (scan rate: 0.2 V.s⁻¹).

Figure S59 - Cyclic voltammogram of ligand 5-Aphen (L8) in acetonitrile (scan rate: 0.2 V.s⁻¹).

Figure S60 - Cyclic voltammogram of complex [Cu(dppf)(NCMe)₂][BF₄] in acetonitrile (scan rate: 0.2 V.s-1), showing the redutive processes present in the first scan (dashed line).

Figure S61 - Cyclic voltammogram of complex $[Cu(dppf)(Me_2bpy)][BF_4]$, <u>1</u> in acetonitrile (scan rate: 0.2 V.s⁻¹), showing the isolated Fe(II)/Fe(III) and Me2bpy processes (dashed line).

Figure S62 - Cyclic voltammogram of complex [Cu(dppf)(pbt)][BF₄], <u>2</u> in acetonitrile (scan rate: 0.2 V.s⁻¹).

Figure S65 - Cyclic voltammogram of complex [Cu(dppf)(pBI)][BF₄], <u>6</u> in acetonitrile (scan rate: 0.2 V.s⁻¹).

Figure S66 - Cyclic voltammogram of complex [Cu(dppf)(dpytz)][BF₄], <u>7</u> in acetonitrile (scan rate: 0.2 V.s⁻¹).

Figure S67 - Cyclic voltammogram of complex [Cu(dppf)(5-Aphen)][BF₄], **<u>8</u>** in acetonitrile (scan rate: 0.2 V.s⁻¹), showing the isolated Fe(II)/Fe(III) and phenanthroline based processes (dashed line).

Figure S68 - Intermolecular interactions for complexes [Cu(dppf)(pBI)]⁺ <u>6</u>, [Cu(dppf)(dpytz)]⁺ <u>7</u> and [Cu(dppf)(5-Aphen)]⁺ <u>8</u>.

D HA	[ARU]	D - H	НА	DA	D - HA		
Complex 6							
C3H3F4	1-x, -1/2+y, 1/2-z	0.95	2.45	3.1437(1)	130		
C8H8F4	х, y, z	0.95	2.39	3.2507(1)	150		
C19H19Cl2	1-x, 1-y, 1-z	0.95	2.82	3.5607(1)	135		
C19H19Cl2A	1-x, 1-y, 1-z	0.95	2.82	3.4672(1)	126		
C22H22F1	x, 1/2-y, 1/2+z	0.95	2.47	3.3209(1)	149		
C47H47AF3	Χ, Υ, Ζ	0.99	2.42	3.0124(1)	118		
Complex 7							
C28H28F2	1/2+x, 1/2-y, -1/2+z	0.93	2.54	3.4465(2)	165		
Complex 8							
N3H3BF1	1-x, -y, -z	0.88	2.21	2.9420(2)	140		
C1H1F4	х, y, z	0.95	2.31	3.1019(2)	140		
C10H10F2	-1+x, y, z	0.95	2.30	3.2416(2)	169		
C16H16F3	1/2-x, 1/2+y, 1/2-z	0.95	2.46	3.3456(2)	155		
C22H22F2	-1+x, y, z	0.95	2.45	3.2691(2)	145		
C33H33F1	-1+x, y, z	0.95	2.55	3.2856(2)	135		

Table S1 - Hydrogen bonds for complexes [Cu(dppf)(pBI)]⁺ 6. [Cu(dppf)(dpytz)]⁺ 2 and [Cu(dppf)(5-Aphen)]⁺ 8.

Table S2 - IC₅₀ values found for compounds $\underline{1}-\underline{8}$, precursor, free ligands and cisplatin in the breast adenocarcinomaMCF7 and MDAMB231 and primary healthy fibroblasts cells (24 h, 37 °C).

Compound		IC ₅₀ (μM)	
	MDAMB231	MCF7	Fibroblasts
[Cu(dppf)(NCMe) ₂][BF ₄]	34.1 ± 7.0	18.6 ± 4.1	
[Cu(dppf)(Me2bpy)][BF ₄] <u>1</u>	2.92 ± 1.5	1.39 ± 0.4	1.5 ± 0.05
[Cu(dppf)(pbt)][BF ₄] <u>2</u>	35.5 ± 5.5	8.78 ± 1.5	20 ± 0.5
[Cu(dppf)(bopy)][BF ₄] <u>3</u>	19.1 ± 4.6	7.53 ± 1.6	15 ± 0.2
[Cu(dppf)(dpk)][BF ₄] <u>4</u>	14.3 ± 2.5	6.36 ± 1.4	10 ± 0.1
[Cu(dppf)(dpp)][BF ₄] <u>5</u>	3.2 ± 1.4	1.80 ± 0.5	10 ± 0.2
[Cu(dppf)(pBI)][BF ₄] <u>6</u>	2.61 ± 0.9	2.51 ± 0.9	8 ± 0.1
[Cu(dppf)(dpytz)][BF ₄] <u>7</u>	1.72 ± 0.4	1.48 ± 0.3	5 ± 0.08
[Cu(dppf)(5-Aphen)][BF ₄] <u>8</u>	1.21 ± 0.2	0.77 ± 0.1	1 ± 0.05
Cisplatin		59 ± 12	
Dppf	> 100	51.6 ± 10	
Me2bpy		> 100	
pbt		55.1±7.5	
вору		> 100	

dpk	> 100
dpp	> 100
рВІ	> 100
dpytz	> 100
5-Aphen	> 100
[Cu(dppe)(NCMe) ₂][BF ₄] ²⁷	1.38 ± 0.71
[Cu(PPh ₃) ₂ (NCMe) ₂][BF ₄] ²⁶	13.4 ± 5.3
[Cu(dppe)(Me2bpy)][BF ₄] ²⁷	0.46 ± 0.14
[Cu(dppe)(dpp)][BF ₄] ²⁷	0.80 ± 0.34
Cu(dppe)(dpytz)][BF ₄] ²⁷	0.51 ± 0.08
[Cu(PPh ₃) ₂ (pbt)][BF ₄] ²⁶	6.6± 2.2
[Cu(PPh ₃) ₂ (bopy)][BF ₄] ²⁶	11.6 ± 3.9
[Cu(PPh ₃) ₂ (dpk)][BF ₄] ²⁶	7.6 ± 3.2
[Cu(PPh ₃) ₂ (dpp)][BF ₄] ²⁶	17.7 ± 5.5