Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Bond distance (Å)		Dihedral angle (°)		
C5-N	1.484	C5-N-V-O1	-179.2	
N-V	2.140	C5'-N'-V-O1'	-170.3	
O1-C8	1.314	C5-N-V-O1'	-56.9	
V-01	1.912	C5'-N'-V-O1	-47.5	
N-C6	1.286	C5-N-C6-C7	178.9	
V-O3	1.603	C5'-N'-C6'-C7'	174.3	
Bond angle (°)		C1-C5-N-C6	-11.6	
C5-N-V	114.6	C1'-C5'-N'-C6'	123.0	
C6-N-V	125.1	C1-C5-N-V	173.7	
01-V-N	86.6	C1'-C5'-N'-V	-64.3	
01-V-N'	85.8	C8-O1-V-N	-2.3	
N-V-N'	163.6	C8'-O1'-V-N'	-5.6	
01-V-01'	122.1	C8-O1-V-N'	-171.0	
03-V-01	119.8	C8'-O1'-V-N	-169.5	
03-V-N	98.0	C6-N-V-O1	6.4	
C8-O1-V	135.2	C6'-N'-V-O1'	1.7	
C1-C5-N	115.8	C6-N-V-O1'	128.7	
C5-N-C6	118.0	C6'-N'-V-O1	124.6	
N-C6-C7	127.4	C5-N-V-O3	58.2	
		S-C1-C5-N	105.0	
		S'-C1'-C5'-N'	-105.8	
		C13-O2- C9-C8	-175.3	
		C13'-O2'-C9'-C8'	176.0	

Table S1. More relevant geometrical calculated parameters for [VO(oVATPNH2)₂

Table S2. Vibrational spectra of $[VO(oVATPNH2)_2]$. Assignment and comparison with the free ligand (oVATPNH2) data (wavenumbers in cm⁻¹

oVATPNH2 (a)			VO(oVATPNH2) ₂				
IR.	Raman	Calc	Ássignment	IR	Raman	Calc.	Assignment
3003 vw	3005 w	3153	ν Ο-Η				
2923 sh	2928 m	3045	$v_{as}CH_2$	2917 sh		3114/3093	v _{as} CH ₂
1631 vs	1635 vs	1685	v C=N	1613 vs	1621 vs	1677/1671	v C=N
1583 sh	1587 m	1660	v ring (oVA)	1601 sh		1639/1636	
		1618	+δ O-H	1555 m	1558 s		v ring (ovA)
1462 vs	1472 m	1505	$\delta_{as} CH_3$	1469 s	1474 s	1505	$\delta_{as} CH_3$
	1440 m	1493	$\delta_{as} CH_3$	1452 s,b	1444 vs	1491	$\delta_{as} CH_3$
1415 m,b		1480	δCH_2	1404 m		1498	δCH_2
		1460	δ O-H + δ_s CH ₃ + δ C-H(oVA)			1477/1471 1475/1475	v coord. ring + δ CH ₂ δ_s CH ₃
1000	4007 -	4055		1362 vw	1348 s	1393/1390	$\rho_w CH_2 + \delta CH (Tph) + \delta C-H (Ar-CH)$
1333 m-w	1337 S	1355	$\rho_w CH_2$	1334 m,b		1383/1382	ν ring (oVa) + ρ_w CH ₂ + δ C-H (Ar-CH)
						1373	$\rho_w CH_2$
1313 m		1315	ν C-O (ArOH) + δ C-H (oVA)	1301 s,b	1312 m	1370/1349	ν C-O (Ar-O) + δ C-H (Ar-CH) + ρ_w CH_2
						1335	$v \text{ C-O(Ar-O)} + \rho_w \text{ CH}_2$
1269 s		1286	δ C-H (Tph) + ο _ε CH₂		1272 vw	1307/1301	δ CH (Tph) + ρ_r CH ₂
1255 vs	1258 vw	1282	v C-OCH ₃ + δ C-H (οVA)	1247 s,b		1276/1275	ν C-OCH ₃ + δ CH (oVa)
1242 sh 1081 m-s	1229 m	1168 1129	v C-CH ₂	1226 m,b	1229 m-s 1083 w	1157/1156	ν C-CH ₂
10011110	1000 111	1120	+ $\delta ring (\alpha V/\Delta)$	1000 111	1000 11	1112/1109	
						1112/1100	$+ \delta CH (oVa)$
				993 m b	992 mw	1054	v V = 0
853 mw	856 vw	842	v C-H (Tph)	865 m.s	859 vw	855	γ C-H (Tph)
			/ O II (I pli)	853 w			, o (. p.,)
832 ms,b	838 w	851	γ Ο-Η				
750 mw	757 w	762	v S-CH	757 w	760 m	751/753	v S-CH + δ ring(oVa)
700 -	705	740	$+ \delta C - C - C(CH_2)$	740 m	740	740	
730 5	/ 35 11	740	γ C-H (OVA)	742 m	743 W	748	γ C-H (OVA)
125 5		142	ð ring (ovA)	694 sh	695 vw	764	δ ring [oVA + Tph]
615 vw	620 m	627	δ ring [oVA +	617 w	000 111	625	δ ring IoVA + Tph]
			Tph]	611 sh	602 m	612	+ δ coord ring
						587	$v_{as}O-V-O + \gamma ring (Tph) + \gamma ring (oVA)$
							$v_s O-V-O + \delta Ar-O-CH_{3+}\gamma$ ring (Tph)
						581	
				461 w,b	467 sh	460/443	v_{as} N-V-N
					444 w	464/455	v _s N-V-N

(a) Data extracted from ref ²¹. vs: very strong, s: strong, m: medium, w: weak, vw: very weak, b: broad, sh: shoulder: Tph: thiophene ring.

Figure S1. EPR spectra of $[VO(oVATPNH_2)_2]$ (**III**) at different temperatures: 298 K (solid line), 200 K (dotted line) and 120 K (dashed line). Experimental details: modulation frequency = 100 kHz, modulation amplitude = 0.1 mT, time constant = 40.96 ms, conversion time = 81.92 ms, gain = 6,3 x 10⁴, power = 2.0 mW, microwave frequency = 9.4223 (298 K), 9.4225 (200 K) and 9.4258 GHz (120 K).

Figure S2. EPR spectrum of [VO(oVATPNH₂)₂] (**III**)solution in a (1:1) (ethanol:DMF) at 298 K (solid line) together with the best fit (dashed line). Experimental details: modulation frequency = 100 kHz, modulation amplitude = 0.1 mT, time constant = 40.96 ms, conversion time = 327.68 ms, gain = 6,3 10⁴, power = 20.0 mW, microwave frequency = 9.7624 GHz. Fitting parameters: (a) Lorentzian-type signal, g_{iso} = 1.974; A_{iso} = 9.9 mT (91.2 10⁻⁴ cm⁻¹) (linewidth H_{iso} = 2.0 mT).

Figure S3. Molecular orbitals involved in the electronic transitions of [VO(oVATPNH2)₂]

Figure S4. Thermal analysis of the solid complex [VO(oVATPNH2)₂] **a**. in oxygen **b**. in nitrogen atmosphere.

Figure S5. Effect of VO(oVATPNH2)₂]. On apoptosis assessed by flow cytometry using annexin V– fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The plots are representative of three independent experiments. The numbers in the Q1LR and Q1UR quadrants indicate the proportions of cells that are annexin V positive/PI negative and annexin V positive /PI positive, respectively