Supporting Information

Liquid Phase CO₂ Hydrogenation to Formate Using Palladium and Ruthenium Nanoparticles Supported on Mo₂C

Claire Mitchell^a, Umberto Terranova^a, Ihfaf Alshibane^b, David J. Morgan^a, Thomas Davies^a, Qian He^a, Justin Hargreaves^b, Meenakshisundaram Sankar^a*, Nora H. de Leeuw^a*

[a] Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 4AT, United Kingdom

[b] School of Chemistry, Glasgow University, Glasgow G12 8QQ, United Kingdom

[c] HarwellXPS, EPRSC National Facility for X-ray Photoelectron Spectroscopy, Research Complex at Harwell (RCaH), Didcot, Oxon, OX11 0FZ, United Kingdom

Correspondence to:

Dr. M. Sankar, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 4AT, United Kingdom; Email: <u>Sankar@cardiff.ac.uk</u>

Prof. N. H. de Leeuw, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 4AT, United Kingdom; Email: <u>deleeuwn@cardiff.ac.uk</u>

Catalyst	Base	pCO ₂ +pH ₂	Temperature	TOF	Literature
		(MPa)	(°C)	(h ⁻¹)	Source
Pd/Chitin	NaOH	4	60	257	1
Pd/g-C ₃ N ₄	none	5	40	95	2
PdAg/TiO ₂	NaHCO ₃	2	100	31	3
Pd/TiO ₂	NaHCO ₃	2	100	12	3
Pd ₃ Ni ₇ /CNT-	none	5	40	7.2x10 ⁻³	4
GR					
Ru/LDH	NaOH	2	100	29	5
Rh-HT	none	5	60	660	6

Table S1: Reported heterogeneous catalysts for the CO_2 hydrogenation to formate salts under aqueous alkaline conditions

PXRD pattern in Figure S1 confirms the formation of beta molybdenum carbide. Eight major reflections at $20 \approx 34$, 38, 39, 52, 62, 69.5, 74, and 75 corresponding to the crystal planes (100), (002), (101), (102), (110), (103), and (112) respectively of β -Mo₂C are observed respectively, indicating a high degree of crystallinity. The formation of this hcp phase is consistent with the reference to the JCPS 001-1188 PDF file and previous publication. Because of low metal loading, Pd or Ru peaks are not detected.

Figure S1: Powder XRD patterns for [a] 1% Pd/Mo₂C-MIm (0.58) [b] 1% Ru/Mo₂C and [c] 1% RuPd/Mo₂C [d Mo₂C (commercial) [e] Mo₂C (lab synthesised)

<i>Table 52: Formate productivity using different Pa/Mo₂C catalysts</i> ¹	Table S2:	Formate	productivity	using	different	Pd/Mo_2C	catalysts	[a]
---	-----------	---------	--------------	-------	-----------	------------	-----------	-----

Catalyst	Pd loading	Formate
	(wt. %)	(mmol)
1% Pd/Mo ₂ C-MIm (0.58M)	1.09 ^[b]	1.09
5% Pd/Mo ₂ C-MIm	5.16 ^[b]	2.14
1% Pd/Mo ₂ C- MIm (2M)	1.02 ^[b]	1.53
1% Pd/Mo ₂ C-SIm	0.80 ^[b]	0.39
1% Pd/CeO ₂	1.00	0.204

[a] Reaction conditions: Pd/Mo_2C , Pd/CeO_2 : 150 mg; 1M aqueous NaOH: 15 ml; pCO_2 : 10 bar (at 25 °C); pH_2 : 10 bar (at 25 °C); reaction temperature: 100 °C; reaction time: 19 h. [b] Determined by MP-AES. Catalysts were digested in aqua regia to dissolve the metal and diluted in H_2O prior to analysis

Table S3: Pd v	<i>weight percentages</i>	of	catalysts	during s	stability	study,	calculated	using	MP-	•AES
----------------	---------------------------	----	-----------	----------	-----------	--------	------------	-------	-----	------

	Weight Perce	ntage		
Re-use	1%	1% Pd/Mo ₂ C	1%	1%
	Pd/Mo ₂ C	-MIm	RuPd/Mo ₂ C	Pd/Mo ₂ C
	-MIm (2M)	(0.58M)		-Sy
Fresh	1.02	1.09	0.99	1.02
1 st	1.05	1.13	0.96	1.01
2 nd	1.07	1.15	1.00	1.12

Catalysts were digested in aqua regia to dissolve the metal and diluted in H_2O prior to analysis

Figure S2: Elemental Pd in solution testing to confirm that metal-support interactions are improving the activity for CO_2 hydrogenation. Reaction conditions in 10ml stainless steel autoclave: Pd: 0.4mg; 1M NaOH: 4ml; pCO₂: 10 bar (at 25 °C); pH₂: 10 bar (at 25 °C); reaction temperature: 100°C; reaction time: 19h.

Figure S3: (a) (001), (b) (010), (c) (011) and (d) (101) surfaces of Mo₂C. Colour code: Molarge purple spheres, C-small brown spheres.

Table S4: Energies of the different surfaces of Mo₂C.

Surface	γ (meV/Ų)
(001)	227
(010)	186
(011)	206
(101)	171

Figure S4: Mo 3d XPS spectra of 1% Pd/Mo₂C-MIm (2M) [a] fresh sample [b] used sample and 1% RuPd/Mo₂C [c] fresh sample [d] used sample

X-ray photoelectron spectroscopic data (Mo 3d) of 1% Pd/Mo₂C-MIm (2M) (Figure S2 a & b) reveals that the support is predominantly oxidised with several oxidation states of molybdenum ranging from Mo($^{\delta+}$) to Mo($^{6+}$) (1< $^{\delta<4}$). The two main peaks at 232.8 and 235.9 eV can be attributed to the 3d_{5/2} and 3d_{3/2} transitions of Mo $^{6+}$, in MoO₃. Molybdenum carbide found at peaks 232.87 and 232.1 eV, attributed to the transitions of 3d_{5/2} and 3d_{3/2} transitions of Mo $^{\delta+7}$. A number smaller peaks are found in the range 235-240 eV which are attributed to molybdenum oxides of lower Mo valency, or more likely Mo $^{5+}$ /Mo $^{4+}$ oxycarbides. Similar results are obtained by Griboval-Constant *et al* ⁸ and Xiang *et al* ⁹. The presence of these partial and/or total oxidation species of molybdenum can be attributed to surface oxidation and/or passivation of the catalyst prior to exposure to air during the Mo₂C synthesis ⁹. It should be mentioned that no bulk MoO₂ or MoO₃ is found by XRD ¹⁰. 1% RuPd/Mo₂C presents a similar Mo 3d XPS spectra (Figure S2c) to 1% Pd/Mo₂C-MIm (2M), revealing a range of molybdenum

carbide and molybdenum oxide species. However, a used 1% RuPd/Mo₂C sample (Figure S2d) has no carbide visible, suggesting a thick oxide film at the surface greater than 10nm.

To calculate the activation energy (E_a), rates of conversion of substrate at different temperatures are required. In our system, quantification of CO₂ and H₂ is extremely challenging. Hence, we have used formate concentration to calculate the rate of the reaction since formate is the only product detected and we are assuming 100% selectivity. The rate constants were calculated for three different temperatures: 75, 100 and 125 °C for both monometallic Pd/Mo₂C and bimetallic RuPd/Mo₂C catalysts.

Figure S5. Effect of temperature on the catalytic hydrogenation of CO_2 using (a) 1% Pd/Mo₂C-MIm (2M) (b) 1%RuPd/Mo₂C at 75, 100 and 125°C and varying reaction times. Reaction conditions: catalyst 150 mg (monometallic, 0.014mmol (Pd); bimetallic, 0.007mmol (Pd, Ru)); 1M aqueous base: 15 ml; pCO₂: 10 bar (25 °C); pH₂: 10 bar (25 °C)

The activation energy E_a of the reaction can be determined using the Arrhenius equation, by plotting *lnk* and 1/T, as shown in Figure S6.

Figure S6. Arrhenius plot of the temperature dependence of the rate constant for (a) 1%Pd/Mo2C-MIm (2M) (b) 1%RuPd/Mo₂C.

Activation energies for the catalysts 1%Pd/Mo₂C-MIm (2M) and 1%RuPd/Mo₂C are :

Pd/Mo ₂ C	+35.9 kJ/mol
RuPd/Mo ₂ C	+42.6 kJ/mol

References

- H. Song, N. Zhang, C. Zhong, Z. Liu, M. Xiao and H. Gai, *New J. Chem.*, 2017, 41, 9170–9177.
- C. Mondelli, B. Puértolas, M. Ackermann, Z. Chen and J. Pérez-Ramírez, *ChemSusChem*, 2018, 11, 2859–2869.
- 3 K. Mori, T. Sano, H. Kobayashi and H. Yamashita, *J. Am. Chem. Soc.*, 2018, **140**, 8902–8909.
- 4 L. T. M. Nguyen, H. Park, M. Banu, J. Y. Kim, D. H. Youn, G. Magesh, W. Y. Kim and J. S. Lee, *RSC Adv.*, 2015, **5**, 105560–105566.
- 5 K. Mori, T. Taga and H. Yamashita, *ACS Catal.*, 2017, 7, 3147–3151.
- 6 M. S. Maru, S. Ram, J. H. Adwani and R. S. Shukla, *ChemistrySelect*, 2017, 2, 3823–

3830.

- 7 E. T. Liakakou and E. Heracleous, *Catal. Rev. Eng.*, 2016, 6, 1106–1119.
- 8 A. Griboval-Constant, J.-M. Giraudon, G. Leclercq and L. Leclercq, *Appl. Catal. A Gen.*, 2004, **260**, 35–45.
- 9 M. Xiang and J. Zou, J. Catal., 2013, 2013, 1–5.
- J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts and N. Fairley, *Appl. Surf. Sci.*, 2015, **326**, 151–161.